European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Data-Driven Design of Disordered Materials

Descripción del proyecto

Un gran paso para los materiales desordenados gracias al diseño basado en datos

Los materiales desordenados, tales como las espumas celulares y las redes de fibras y polímeros, son materiales cristalinos que carecen de una estructura periódica de largo alcance. A diferencia de sus homólogos cristalinos y a pesar de ser robustos y tolerar los defectos, se les ha prestado poca atención. Esto se debe principalmente a su amplio espacio de diseño, que es inaccesible con las técnicas de muestreo estándares. El equipo proyecto D4M, financiado por las Acciones Marie Skłodowska-Curie, planea desarrollar un marco racional novedoso para el diseño de materiales que aproveche sistemáticamente el desorden y que se base totalmente en datos. La investigación propuesta debería tener implicaciones de gran calado en el diseño de materiales celulares, granulares y fibrosos con aplicaciones en biomecánica (prótesis, ortesis, bioimplantes) y el deporte (equipos de protección, ropa, calzado).

Objetivo

With increasingly advanced manufacturing techniques, architected materials or metamaterials continue to gain popularity. Researchers have produced ultrastrong, ultrastiff and ultralight metamaterials, whose anomalous properties emerge upon mechanical actuation. Their vast majority are designed with a periodic and regular lattice structure. On the other hand, architected disordered materials have received little attention (e.g. earlier studies on foams) despite their robustness and flaw tolerance compared to regular lattice-based materials. This is largely due to their vast design space, which has been inaccessible with standard sampling techniques. The aim of the project D4M (DEFORM) is the development of a novel rational framework for material design, that systematically exploits disorder, and is completely data-driven, and hence experience-free. The framework relies on four synergistic elements: i) a unified network-theoretic representation of disordered material architectures, ii) the use of mechanics and complex networks as tools for evaluating design objectives, iii) the development of efficient graph machine learning techniques for executing the design, and iv) the practical implementation and validation of a suite of designs by additive manufacturing and testing. By focusing on design objectives such as high energy absorption and tailored nonlinear deformation response, the proposed research is expected to have a diverse impact in the design of cellular, granular and fibrous materials with applications in biomechanics (prosthetics, orthotics, bioimplants) and the sports industry (protective equipment, clothing, shoes). The implications of the proposed research stretch beyond these engineering applications and into the scientific understanding of complex biological systems such as bone and collagen. This project will constitute a significant next step for the academic reintegration and professional establishment of the researcher in Europe.

Coordinador

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Aportación neta de la UEn
€ 203 149,44
Dirección
Raemistrasse 101
8092 Zuerich
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Zürich Zürich
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 203 149,44