Project description
Hormone quantification in women’s saliva samples to determine fertility window
The quantification and monitoring of four specific female hormones are crucial for the early identification of infertility or diseases associated with hormonal imbalances. However, the commercially available tests only measure one or two of the four key hormones. The EU-funded Umay4women project is developing a reliable quantification method of all hormones involved in the ovulatory cycle, using saliva samples to accurately determine the fertility window. The sensing strategy is based on a novel photoelectrochemical approach, and this technology has the potential to be extended to a wider range of applications, including fertility monitoring in the animal industry or patient monitoring in healthcare applications.
Objective
Recent data estimate that approximately 8 – 10 % of couples are facing fertility problems which means more than 50 million people worldwide are struggling to get pregnant. One of the main reasons couples have difficulty conceiving is their inability to accurately predict the female’s ovulation period. Indeed, the quantification and monitoring of four specific female hormones is crucial for early identification of infertility and tracing of diseases associated with hormonal disbalances (e.g. ovarian cancer). In comparison with costly and complex conventional methods and commercially available test that only measure one or two of the four key hormones, Umay4women (Umay) proposes, for the first time, a unique and reliable quantification of all hormones involved in the ovulatory cycle to accurately determine the ‘fertility window’ by using non-invasive saliva samples. The novelty of this project relies on the combination of nanomaterials, photosensitizers, paper-based microfluidics and immunoassay disciplines to develop a multiarray biosensor, overcoming the drawbacks of current techniques and sampling methods. Importantly, the sensing strategy is based on a novel photoelectrochemical approach which uses the light to trigger the electrochemical response, thus eliminating potential interferences and empowering the readout. Although initially focused on fertility monitoring in women, the underlying technologies have the potential to be further extended after this fellowship for a wider range of applications and final users (e.g. monitoring of fertility in animal industry or tracing the evolution of patients after ovarian cancer treatment) to develop reliable, low-cost, multiarray platforms for healthcare applications. From the clinical perspective, Umay will facilitate the direct and rapid quantification of the key fertility hormones which will lead to faster and private decision-making processes toward an enhancement of the fertility management of each women.
Fields of science
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsmicrofluidics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsbiosensors
- social sciencessociologydemographyfertility
- medical and health sciencesclinical medicineoncology
- engineering and technologynanotechnologynano-materials
Keywords
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
2000 Antwerpen
Belgium