Description du projet
Le graphène et la pérovskite réunis dans une cellule solaire très performante et peu coûteuse
Augmenter l’efficacité et réduire le coût sont les principaux moteurs de la recherche et du développement dans le domaine de l’énergie photovoltaïque. Les cellules solaires en pérovskite ont suscité un intérêt considérable, leur efficacité ayant rapidement augmenté, passant d’environ 3 % seulement en 2006 à plus de 25 % aujourd’hui. De nombreux défis empêchent toutefois un déploiement commercial à un coût compétitif. Si le remplacement des électrodes en or conventionnelles par un film conducteur à base de graphite peu coûteux constitue une solution prometteuse, l’interface pérovskite-carbone a toutefois ralenti les progrès entrepris en ce sens. Avec le soutien du programme Actions Marie Skłodowska-Curie, le projet GNPs4PVs développe de nouvelles électrodes imprimables à base de nanoplaquettes de graphène pour remplacer le graphite. L’ingénierie interfaciale devrait permettre d’améliorer l’efficacité et d’augmenter la durée de vie opérationnelle tout en réduisant les coûts, ouvrant enfin la porte à la commercialisation du photovoltaïque pérovskite.
Objectif
Due to their high efficiencies (>25%), low-cost and compatibility with scalable, low energy demanding fabrication techniques, perovskite solar cells (PSCs) are the most promising PV technology to replace silicon. However, there are challenges towards their commercialisation, including the low operational stability, the use of expensive components (gold) and the need for expensive, high temperature/vacuum deposition equipment. These complexities increase the manufacturing cost/carbon footprint and reduce the manufacturing throughput. A promising way to overcome these challenges is by adopting the Carbon-based PSCs (CPSCs) configuration, in which the gold electrode is replaced by a low-cost printable carbon (graphite-based) conductive film. However, due to the electronic losses at the Carbon/Perovskite interface and the high sheet resistance of graphite-based Carbon electrodes (>10 Ohm/sq), the highest reported certified power conversion efficiency (PCE) for CPSC is just 12.8%. The research carried out under this proposal aims to: 1) generate the first CPSC with certified PCE > 20% and operational lifetime comparable to commercial technologies and 2) demonstrate stable CPSC modules (100cm2) with >15% PCE. This will be enabled by exploiting novel printable Graphene Nanoplate based electrodes (replacing graphite), perovskite passivation and interfacial engineering approaches. Such an outcome would be tremendously important for the EU market and will attract the attention of industry towards commercialization. The expected outcome will enable a significant reduction in the levelized cost of electricity to 0.03 €/kWh, even below the cost of traditional energy sources. Also, a significant reduction of CO2 emissions is expected, thanks to the excellent device lifetime potential and the low energy demanding fabrication processes. Therefore, the demonstration of CPSCs with the aforementioned capabilities would represent a significant scientific and technological breakthrough.
Champ scientifique
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructuresgraphene
- natural scienceschemical sciencesinorganic chemistrytransition metals
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
1015 Lausanne
Suisse