Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Fully RoHS Compliant Infrared Light Emitting Diodes Based on Novel Lead-free Quantum Dots

Project description

Infrared LEDs based on novel colloidal materials and nanoengineered devices

The technology of infrared light-emitting diodes (IR-LEDs) supports a large variety of applications, such as fibre-optic communication, biomedical imaging, security and night vision. While lead-containing colloidal semiconductor quantum dots (QDs) offer exceptional promises for IR-LED technology due to their low-cost production and unique optical properties, their progress is severely restricted because of the lead toxicity. The EU-funded INFLED project will identify and develop novel and efficient lead-free QDs. At the crossroad of chemistry, physics and engineering, the project will target the most efficient heavy metal-free IR-LED using a novel synthesis technique as well as rational nanoengineering at both material and device level.

Objective

Infrared light-emitting diodes (IR-LEDs) serve a broad range of applications including fiber-optic communications, night vision as well as clinical diagnosis and biomedical imaging. Within the family of nanomaterials, colloidal semiconductor quantum dots (QDs) offer exceptional promises for IR-LEDs due to their unique optical properties and low-cost solution-processability. So far, state-of-the-art QD IR-LEDs are based on lead-containing QDs, which has been severely restricted by the environmental directives e.g. EU’s “Restriction of Hazardous Substances” (RoHS). In fact, current challenges of IR-LED technology are to identify and develop novel and efficient lead-free QDs. INFLED aims at demonstrating the first RoHS-compliant and efficient QD IR-LED based on innovative and environmentally friendly material design and device engineering. The project targets the most efficient heavy metal-free infrared QD using a novel synthesis technique as well as rationally nanoengineering at material level. Furthermore, the resultant design at device level will lead to low trap state density, high solid-state quantum efficiency and thereby efficient LEDs. Hence, the key objectives of this proposal are: i) a novel QD synthesis method; ii) material design at nanocrystalline level; iii) LED device engineering at supra-nanocrystalline level. INFLED is at the crossroad of chemistry, physics and engineering, and therefore is expected to attract significant attention from different disciplines along with offering new insights toward next-generation infrared and quantum network technology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 171 473,28
Address
VIA MOREGO 30
16163 GENOVA
Italy

See on map

Region
Nord-Ovest Liguria Genova
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 171 473,28
My booklet 0 0