Descripción del proyecto
Nuevos biosensores de ADN para el diagnóstico clínico
La medicina de alta precisión requiere la medición exacta y al instante de biomoléculas de importancia clínica. Con todo, los sensores utilizados hoy día en química bioanalítica siguen planteando problemas de bioingeniería. El objetivo del proyecto Entropic DNA Sensors, financiado con fondos europeos, es desarrollar unos nuevos biosensores con un rendimiento mejorado y previsible. El trabajo abordará las propiedades de unión de los biorreceptores de ADN y conducirá a un diseño novedoso que permita medir varias moléculas en fluidos biológicos complejos. Es más, los biosensores desarrollados no requerirán calibración y proporcionarán un modo de lectura fácil de usar que se podrá emplear en la práctica clínica.
Objetivo
My proposed program consists in a 2-year research activity at the forefront of bioengineering, aiming at the development of Entropically programmable DNA-based bioSensors for high-precision medicine (Entropic DNA Sensors). Biosensors have achieved a significant feat in bioanalytical chemistry and translational science: high-frequency, real-time and quantitative measurements of clinically relevant molecules in vitro, and in vivo. Despite their advantages, our ability to precisely control and regulate the binding activity of their bioreceptors (i.e. the recognition element) still represents a highly relevant bioengineering challenge and limitation. Indeed, the fully control of bioreceptor’s binding properties would allow the design of new biosensors with improved and predictable analytical performance. In Entropic DNA Sensors I propose a multidisciplinary, innovative, and versatile approach based on a purely naturally inspired entropic allostery mechanism which allows to finely tune the activity and the response of synthetic bioreceptors. Specifically, my goal is to further explore our ability to rationally design intrinsically disordered domains into classic DNA-based bioreceptors so as to improve their useful dynamic range. Then, I will adapt these intrinsically disordered bioreceptors into an electrochemical read-out modality that supports the real-time, multi-hour, high-frequency, calibration-free measurements of clinically relevant molecules (i.e. doxorubicin, glucose, phenylalanie) directly in complex biological fluids in vitro. Finally, I will test them in simulated clinical scenarios to demonstrate their ability to reach personalized medicine. To achieve this goal I will leverage my experience in In vivo biosensing and Point-of-care (PoC) testing technologies with the recognized expertise in Functional DNA nanotechnology and Synthetic biology of Prof. Francesco Ricci at University of Rome Tor Vergata (UNITOV-Rome, Italy).
Ámbito científico
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsbiosensors
- natural sciencesbiological sciencessynthetic biology
- natural sciencesbiological sciencesgeneticsDNA
- engineering and technologynanotechnology
- medical and health scienceshealth sciencespersonalized medicine
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
00133 Roma
Italia