Projektbeschreibung
Neuartige DNA-basierte Biosensoren für die klinische Diagnose
Die Hochpräzisionsmedizin erfordert eine genaue und in Echtzeit vorgenommene Messung klinisch relevanter Biomoleküle. Bei den heute in der analytischen Biochemie eingesetzten Sensoren gilt es jedoch noch biotechnische Probleme zu lösen. Das EU-finanzierte Projekt Entropic DNA Sensors verfolgt das Ziel, neuartige Biosensoren mit verbesserten und vorhersagbaren Leistungseigenschaften zu entwickeln. Die Arbeit wird sich auf die Bindungseigenschaften DNA-basierter Biorezeptoren konzentrieren und zu einem neuartigen Design hinführen, mit dem verschiedene Moleküle in komplexen biologischen Fluiden gemessen werden können. Wichtig ist, dass die nun entwickelten Biosensoren keine Kalibrierung erfordern und einen nutzungsfreundlichen Auslesemodus bieten, der in der klinischen Praxis zum Einsatz kommen kann.
Ziel
My proposed program consists in a 2-year research activity at the forefront of bioengineering, aiming at the development of Entropically programmable DNA-based bioSensors for high-precision medicine (Entropic DNA Sensors). Biosensors have achieved a significant feat in bioanalytical chemistry and translational science: high-frequency, real-time and quantitative measurements of clinically relevant molecules in vitro, and in vivo. Despite their advantages, our ability to precisely control and regulate the binding activity of their bioreceptors (i.e. the recognition element) still represents a highly relevant bioengineering challenge and limitation. Indeed, the fully control of bioreceptor’s binding properties would allow the design of new biosensors with improved and predictable analytical performance. In Entropic DNA Sensors I propose a multidisciplinary, innovative, and versatile approach based on a purely naturally inspired entropic allostery mechanism which allows to finely tune the activity and the response of synthetic bioreceptors. Specifically, my goal is to further explore our ability to rationally design intrinsically disordered domains into classic DNA-based bioreceptors so as to improve their useful dynamic range. Then, I will adapt these intrinsically disordered bioreceptors into an electrochemical read-out modality that supports the real-time, multi-hour, high-frequency, calibration-free measurements of clinically relevant molecules (i.e. doxorubicin, glucose, phenylalanie) directly in complex biological fluids in vitro. Finally, I will test them in simulated clinical scenarios to demonstrate their ability to reach personalized medicine. To achieve this goal I will leverage my experience in In vivo biosensing and Point-of-care (PoC) testing technologies with the recognized expertise in Functional DNA nanotechnology and Synthetic biology of Prof. Francesco Ricci at University of Rome Tor Vergata (UNITOV-Rome, Italy).
Wissenschaftliches Gebiet
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsbiosensors
- natural sciencesbiological sciencessynthetic biology
- natural sciencesbiological sciencesgeneticsDNA
- engineering and technologynanotechnology
- medical and health scienceshealth sciencespersonalized medicine
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordinator
00133 Roma
Italien