Project description
Pedestrian intention prediction to enhance smart vehicle safety
The safety levels of smart vehicles (SV) are high in structured conditions such as motorways but not in less structured environments such as pedestrian junctions and mixed traffic environments. The EU-funded SSVPI project will explore pedestrian intention prediction, which is key for safe SV operation. Specifically, the project will develop multi-source and multi-modal algorithms that can predict intentions of pedestrians under challenging lighting conditions. The results will inform multiple governmental and commercial autonomous driving initiatives.
Objective
There has been a lot of research on smart vehicles (SV, including autonomous vehicles and smart powered wheelchairs), mainly for motorways and other structured environments, with resulting safety levels in such highly structured conditions being excellent. However, the situation is different for less structured environments, particularly where interaction between SV and pedestrians is possible, such as pedestrian junctions and mixed traffic environments. In these cases, more fundamental research in safety aspects is needed, since even minor contact between humans and vehicle poses serious dangers to unprotected humans. Specifically, pedestrian intention prediction is crucial for safe and smooth SV operation. This project aims to develop multi-source and multi-modal algorithms which can predict intentions of pedestrians under challenging lighting conditions (using both visible (RGB) and thermal imaging), using cues from both pedestrian movements as well as their environmental and social context. The project aims at enhancing the safety level of pedestrians in the context of SV in unstructured environments. Apart from the development of novel algorithms in this challenging domain, we aim to maximise the impact of our research through the creation of one of the first pedestrian intention prediction datasets combining RGB and thermal images. Performance evaluation of intention pedestrian algorithms will involve both vehicles in intersections, as well as smart wheelchairs for people with disabilities. By enhancing the safety level of SV and pedestrians through predicting pedestrians' intention under various lighting conditions, the results of this project will be very helpful for the development of SV, and will also promote the public' s acceptance of SV. Consequently, the results of this project are very beneficial for the EU, where multiple governmental and commercial autonomous driving initiatives are active.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering automotive engineering autonomous vehicles
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.