Project description
Searching Martian impact craters for traces of life
Unlike Earth, the surface of Mars has thousands of impact craters. Evidence of the past presence of liquid water on the surface of Mars has fed an interest in Mars impact craters exploration. While impact craters are well preserved, the spatial resolution of the geophysical data is limited by the satellite altitude. The identification of areas of interest for impact-related hydrothermalism is challenging. In this context, the EU-funded THIRST-MARS project will provide a new vector gradient based crustal magnetic model of Mars to better resolve geological features. The project will investigate the evolution of Mars and search for resources and traces of life.
Objective
Impact cratering is a main geological process in the Solar System that can generate a conspicuous amount of heat and, in wet conditions, potentially favor hydrothermalism. The latter plays a key role in the mobilization of elements critical for the habitability of a planetary body and, can promote the formation of economic deposits. Over the last decades, the potential for impact craters to create favorable conditions for life, and the evidence of the past presence of liquid water on the surface of Mars, fed a growing interest in Mars impact craters exploration.
Geophysics plays a critical role in the recognition of impact structures, particularly where we lack direct evidences. Gravity and magnetic observations, as testified by terrestrial impact craters investigations, are primary indicators of these structures and can be used to track physical changes induced by hydrothermal alteration. On Mars, while impact craters are well preserved, the spatial resolution of the geophysical data is limited by the satellite altitude, therefore the identification of areas of interest for impact-related hydrothermalism is challenging.
This project aims to provide a new vector gradient based crustal magnetic model of Mars to better resolve geological features, e.g. hydrothermally altered zones within impact craters. However, magnetic data interpretation can be ambiguous and requires a solid knowledge of the variables controlling the magnetic properties of altered/unaltered impact craters rocks. The project aims to accomplish this knowledge with a multi-scale and multidisciplinary study of three selected terrestrial impact craters that experienced hydrothermal alteration.
By investigating the magnetic signature of impact craters and by improving the resolution of the global magnetic crustal model of Mars, this project will provide a new tool to investigate the evolution of Mars, and to target areas of interest for future missions where to search for resources and traces of life.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences earth and related environmental sciences geophysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.