Descripción del proyecto
Un método innovador para fabricar paneles fotovoltaicos eficaces
La eficacia de los paneles de silicio cristalino (c-Si) se ve afectada por una respuesta espectral limitada por debajo de una longitud de onda de 450 nm. La reducción luminiscente (LDS, por sus siglas en inglés) es un método óptico eficaz que aumenta la respuesta espectral del dispositivo fotovoltaico, además de modificar y mejorar la apariencia visual de los paneles solares. Se estudiaron diversos materiales luminiscentes como capas de LDS en diferentes dispositivos fotovoltaicos, aunque también tienen una capacidad deficiente para recoger la luz y un alto rendimiento cuántico de fotoluminiscencia. El proyecto TADF-LDS, financiado con fondos europeos, aplicará ligandos que muestran fluorescencia retardada activada térmicamente (TADF, por sus siglas en inglés) para lograr un cambio sustancial en el rendimiento de los materiales LDS con complejos de lantánidos (Ln). Este método extenderá el rango de absorción de los complejos de Ln y mejorará su rendimiento cuántico general.
Objetivo
Photovoltaic (PV) technology has proven to be the most promising, economic, and clean solution to the global energy crisis. Over the years, tremendous advancements have been accomplished in the solar PV industry in terms of installations, cost reductions and technological advancements. Crystalline silicon (c-Si) panels belong to the first-generation solar PV and hold ~ 95% share of worldwide PV production. The energy conversion efficiency of silicon solar cells in the lab reached a record value of 26.7% in 2017. An important factor affecting the efficiency of Si solar cells is the poor spectral response of Si below 450 nm. Luminescent Down-Shifting (LDS) is an efficient optical approach used for increasing PV device spectral response by converting high energy photons to lower energy photons. LDS can also be used to modify and enhance the visual appearance of solar panels for building-integrated PV applications. To date various luminescent materials like inorganic phosphors and glasses, colloidal QDs, organic dyes and organolanthanides have been studied as LDS layer in different PV devices. Organolanthanide complexes have proven to be attractive candidates to improve the EQE of solar cells compared to other LDS materials due to their uniquely large spectral shift of emission. Their major drawback to date however, is poor light harvesting in the 350 – 450 nm spectral region while simultaneously maintaining high PL quantum yield. To achieve a step change in performance of lanthanide complex LDS materials, we will implement for the first time ligands that exhibit thermally activated delayed fluorescence (TADF), since these may achieve close to 100% ligand to metal sensitization efficiency, even at near-UV and visible wavelengths. This unique method will extend the absorption range of Ln complexes (from <385 nm to <470 nm) with enhanced absorption coefficient, while achieving improved overall quantum yield of Ln complexes and hence overall improved EQE of PV cells.
Ámbito científico
- engineering and technologymaterials engineering
- natural scienceschemical sciencesinorganic chemistrymetalloids
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
EH8 9YL Edinburgh
Reino Unido