Description du projet
Une méthode innovante pour la fabrication de panneaux photovoltaïques efficaces
L’efficacité des panneaux en silicium cristallin (c‑Si) est affectée par une réponse spectrale limitée en dessous d’une longueur d’onde de 450 nm. Le décalage vers le bas luminescent (LDS pour «luminescent down‑shifting») est une approche optique efficace pour augmenter la réponse spectrale des dispositifs photovoltaïques (PV), ainsi que pour modifier et améliorer l’aspect visuel des panneaux solaires. Plusieurs matériaux luminescents ont été étudiés comme couches LDS dans différents dispositifs PV, mais ils présentent également une mauvaise captation de la lumière et un rendement quantique de photoluminescence élevé. Le projet TADF-LDS, financé par l’UE, mettra en œuvre des ligands présentant une fluorescence retardée activée thermiquement (TADF) afin de faire évoluer les performances des matériaux LDS complexes de lanthanide (Ln). Cette méthode permettra d’étendre la gamme d’absorption des complexes de Ln et d’améliorer le rendement quantique global de ces derniers.
Objectif
Photovoltaic (PV) technology has proven to be the most promising, economic, and clean solution to the global energy crisis. Over the years, tremendous advancements have been accomplished in the solar PV industry in terms of installations, cost reductions and technological advancements. Crystalline silicon (c-Si) panels belong to the first-generation solar PV and hold ~ 95% share of worldwide PV production. The energy conversion efficiency of silicon solar cells in the lab reached a record value of 26.7% in 2017. An important factor affecting the efficiency of Si solar cells is the poor spectral response of Si below 450 nm. Luminescent Down-Shifting (LDS) is an efficient optical approach used for increasing PV device spectral response by converting high energy photons to lower energy photons. LDS can also be used to modify and enhance the visual appearance of solar panels for building-integrated PV applications. To date various luminescent materials like inorganic phosphors and glasses, colloidal QDs, organic dyes and organolanthanides have been studied as LDS layer in different PV devices. Organolanthanide complexes have proven to be attractive candidates to improve the EQE of solar cells compared to other LDS materials due to their uniquely large spectral shift of emission. Their major drawback to date however, is poor light harvesting in the 350 – 450 nm spectral region while simultaneously maintaining high PL quantum yield. To achieve a step change in performance of lanthanide complex LDS materials, we will implement for the first time ligands that exhibit thermally activated delayed fluorescence (TADF), since these may achieve close to 100% ligand to metal sensitization efficiency, even at near-UV and visible wavelengths. This unique method will extend the absorption range of Ln complexes (from <385 nm to <470 nm) with enhanced absorption coefficient, while achieving improved overall quantum yield of Ln complexes and hence overall improved EQE of PV cells.
Champ scientifique
- engineering and technologymaterials engineering
- natural scienceschemical sciencesinorganic chemistrymetalloids
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
EH8 9YL Edinburgh
Royaume-Uni