Descripción del proyecto
Un método informático para facilitar el autoensamblaje del origami de ADN
Los procesos naturales en que los componentes básicos se autoensamblan en estructuras organizadas han motivado a los investigadores a construir estructuras con subunidades sintéticas. Los triángulos del origami de ADN son un ejemplo de este tipo de subunidades sintéticas capaces de autoensamblarse formando estructuras de formas y tamaños diversos. Las subunidades y sus interacciones suelen diseñarse para adecuarse todo lo posible a la geometría objetivo de la estructura. El proyecto OPT-ASSEMBLY, financiado por las Acciones Marie Skłodowska-Curie, propone un esquema de optimización informática para reducir la especificidad necesaria de las subunidades en dicho tipo de ensamblajes al relajar las limitaciones geométricas exactas en la superficie objetivo y al aprovechar el cumplimiento de las subunidades. El equipo de OPT-ASSEMBLY, inspirado por el origami de ADN, estudiará dos estructuras en que las subunidades son triangulares y el ensamblaje está inducido por el estrés.
Objetivo
Nature's ability to organize building blocks into large structures of finite size has inspired many researchers to attempt similar constructs with synthetic subunits. DNA origami triangles are such synthetically built subunits capable to self assemble to shells of various shapes. Subunits and their interactions are typically designed so that they match the target shell geometry as much as possible. Such designs, however, require an increasing number of subunit types as the target shell complexity increases. Instead, we propose a computational scheme aimed to reduce the required subunit specificity in such assemblies, by relaxing the exact geometrical constraints on the target surface and exploiting subunit deformability. Two example structures will be considered, in both of which subunits are triangular and the assembly is stress mediated. The first one is an icosahedral structure of either of two sizes, both in a mechanically stressed state. Our aim is to find the appropriate subunit design which assembles both sizes with prescribed yields, from a single type of subunits, by adjusting the subunit's mechanical properties. The second structure is an ellipsoidal shell, which, again, we aim to assemble from a single species of subunits. Finite compliance allows subunits to adapt to the local geometry and coordination, however, the associated frustration raises the problem of controling long range elastic interactions and rules out naive subunit designs. As a solution, we propose an optimization approach to efficiently adjust the subunits' mechanical properties until a target free energy minimum is reached at the required sizes and shapes. We use a coarse grained triangle model with a grand canonical Monte Carlo scheme for equilibrium and dynamical simulations. Progressing from the fastest towards the most accurate estimates of the free energy we intend to provide a full stack methodology for finding the most optimal subunit parameters given a target structure.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
400084 Cluj Napoca
Rumanía