Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Machine Learning for the Study of Ancient Epigraphic Cultures

Description du projet

L’apprentissage automatique au service de l’étude des cultures épigraphiques de la Méditerranée antique

Le projet PythiaPlus, financé par l’UE, étudiera la nature des cultures épigraphiques des mondes grec et romain en exploitant les progrès récents de l’intelligence artificielle. Les inscriptions offrent des témoignages de première main sur la pensée, la langue, la société et l’histoire de l’Antiquité. Cependant, en raison du nombre et de la variété de ces documents, l’étude des nuances et des changements entre les inscriptions est un exercice exigeant. En révolutionnant notre capacité à accéder aux données et à les analyser par la mise en œuvre de modèles d’apprentissage automatique, PythiaPlus interprétera les modèles épigraphiques découverts par ces modèles à travers les textes et les métadonnées de milliers d’inscriptions grecques et latines, bouleversant ainsi notre compréhension de la communication épigraphique dans la Méditerranée antique.

Objectif

PythiaPlus proposes to explore and interpret the nature of the epigraphic cultures of the ancient Mediterranean using Artificial Intelligence. Specifically, it will use Machine Learning (ML) models to trace distinctiveness and change in the Greek and Roman epigraphic evidence on an unprecedented large scale and in unparalleled detail, revealing new insights in linguistic and cultural interactions.
Inscriptions are primary evidence for reconstructing the history and thought of the ancient world, due to their large number and variety in content. However, the chronological development and regional diffusion of inscriptions are not uniform. No print or digital resources exist allowing a precise quantification of inscriptions by time and place, and current approaches are generally confined to specific languages or localised case studies. Recent advances in ML can overcome these limitations: ML is a field of Artificial Intelligence that allows statistical models to discover patterns in large datasets, and learn meaningful representations of them. Because such models can train over vast amounts of data, they can overcome the limitations in quantification and breadth of analysis of current resources and approaches.
By revolutionising our ability to access and analyse the epigraphic data through the implementation of advanced digital technologies, this research will enable and undertake the interpretation of the epigraphic patterns and parallels discovered by ML models across the texts and metadata of thousands of Greek and Latin inscriptions. PythiaPlus will transform our understanding of the use of epigraphic communication and the nature of cultural interference within the written and indirectly spoken languages of the ancient world, making a substantial contribution to the study of Epigraphy and the Historical Sciences.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITA CA' FOSCARI VENEZIA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 171 473,28
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 171 473,28
Mon livret 0 0