Project description
Improved understanding of climate-carbon feedbacks through integrated observations
Climate-carbon feedbacks are a key unknown factor in future climate change models and therefore need to be understood for accurate predictions to be made. The EU-funded CLARION project will focus on land-surface models (LSMs), the terrestrial component of climate models. It will examine observationally constrained probability density functions (PDFs) of key model parameters to reduce the range of possible future climate-carbon cycle feedbacks. This will be conducted using the Joint UK Land Environment Simulator LSM, although the methods developed will be applicable to any LSM. The research fellow will identify and calibrate the key climate model parameters controlling the carbon, water and energy cycles and their relationship with future carbon-climate projections to create observationally constrained PDFs and apply them to climate-carbon cycle projections.
Objective
Climate-carbon feedbacks are a key unknown when projecting future climate change. Large ranges of feedbacks have been identified within the climate models used to make climate projections. Therefore, to make reliable and believable climate projections, there is an urgent need to reduce this uncertainty. In CLARION, I will focus on land-surface models (LSMs), the terrestrial component of climate models. I will investigate how observationally-constrained probability density functions (PDFs) of key model parameters (generated via Data Assimilation - DA) can be used to reduce the range of possible future climate-carbon cycle feedbacks. This will be done in three key steps using the UK JULES (Joint UK Land Environment Simulator) LSM, though, critically, the methods developed throughout this project will be applicable to any LSM. First, I will identify the key climate model parameters controlling the carbon, water, and energy cycles, and their relationship with future carbon climate projections. This will be done through sensitivity analysis experiments based on multi-ensemble runs. Second, using sophisticated Bayesian techniques and the extensive amount of in situ and Earth Observations available, I will calibrate these parameters to create observationally-constrained PDFs. Finally, these PDFs will be used to constrain the range of climate-carbon cycle projections by propagating the reduction in parameter uncertainty. This project will build on my strong expertise in DA techniques and will complement the Host Institute's cutting-edge emergent constraint work, which considers narrowing the range of climate feedback across models. This project will be a unique opportunity to take my demonstrable technical know-how and apply it to the climate change problem, generating high-impact results. During CLARION, I will also launch a JULES DA working group which will bring together the different UK expertise, encouraging collaborations throughout the project and beyond.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EX4 4QJ Exeter
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.