Project description
An in vitro model for studying cerebral malaria
Malaria is a mosquito-borne infectious disease caused by the parasite Plasmodium falciparum. Despite treatment initiation, the parasite may reach the brain and lead to the severe neurological complication of cerebral malaria. Existing evidence indicates that parasite accumulation in the brain leads to vessel occlusion, disruption of the blood–brain barrier and brain swelling. To elucidate the mechanisms of cerebral malaria, the EU-funded FEBRIS project will develop an in vitro model that uses microfluidics and endothelial cells to recapitulate the physiological processes of brain vasculature. Results will provide important insight into the pathogenesis of cerebral malaria and could lead to new therapies.
Objective
Malaria still claims more than 400,000 deaths every year, above all in children under 5. All symptoms are caused by the blood stage of the deadliest parasite species Plasmodium falciparum (Pf), which infects human red blood cells. Cerebral malaria (CM) is the most severe complication, with 20% mortality rate even after administration of fast-acting antimalarials, and is due to build-up of parasites in the brain microvasculature leading to vessel occlusion, blood-brain-barrier disruption, and brain swelling. Current knowledge of CM is based primarily on autopsy analysis, because of limitations of suitable animal models, where disease onset and progression cannot be studied. Additionally, different areas of the brain with distinctive vascular patterns show CM-specific lesions supporting the hypothesis of different regional microcirculations. In my project FEBRIS I will tackle, for the first time, human CM process in vitro models of white and grey matter, and basal ganglia, with cutting-edge bioengineering approaches. I will develop 3D microfluidic devices coated with endothelial cells mimicking vessel networks and physiological flow rates of these three regions of the brain. Numerical simulations will identify critical factors causing blood stagnation, predicting where and when a clog could form. Using this technology brings a unique angle to malaria research to systematically evaluate the unexplored effect of fever on molecular and biophysical mechanisms of Pf sequestration, and the concurrent vascular damage. The obtained findings will be validated with parasites from the field and brain samples from CM patients, examined with pioneer 3D autopsy imaging. This interdisciplinary approach, favoured by my host, aims to provide a holistic understanding of CM pathogenesis. The acquired knowledge could lead to new therapies to reduce fatality by malaria disease and, in a broader context, this innovative platform could be employed to study other neurovascular diseases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences health sciences infectious diseases malaria
- social sciences sociology demography mortality
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.