Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nonlinear Optomechanics for Verification, Utility and Sensing

Project description

Groundbreaking tools support advanced experiments on quantum gravity

Newton’s second law of motion tells us that the force on an object due to gravity is described by a linear relationship and is equal to the mass of the object times the acceleration due to gravity. In the quantum world of exquisitely small displacements, quantum gravitational field effects and gravity-mediated phenomena can be highly nonlinear. Although experimental setups called quantum optomechanical systems have provided a window into such quantum gravitational interactions, the processes can be difficult to describe analytically and numerically. With the support of the Marie Skłodowska-Curie Actions programme, the NOVUS project is developing theoretical tools for modelling nonlinear quantum optomechanical systems that will push the frontiers of experimentation and modelling.

Objective

Quantum optomechanical systems (QOMSs) are comprised of light that interacts with a small mechanical element. Their relatively high mass compared with other quantum systems and excellent sensitivity to small displacements makes them an ideal candidate for quantum sensing and tests of fundamental physics. Yet, due to the lack of analytical solutions for their nonlinear evolution, which is challenging to treat both analytically and numerically, many aspects of nonlinear QOMSs remain unexplored.

The goal of this research project entitled Nonlinear Optomechanics for Utility, Verification and Sensing (NOVUS) is to develop theoretical tools for modelling nonlinear QOMSs, which will pave the way for a number of application-oriented and fundamental studies that have thus far been unavailable. Most importantly, it will bridge the gap between theory and experiments at a time when nonlinear features are becoming increasingly accessible in the laboratory. This key focus on foundations as well as experimental applications has been reflected in the choice of host group and secondments.

Using the developed tools, I will consider some of the most promising applications of QOMSs, including gravity sensing, tests of the overlap between quantum physics and gravity, as well as fundamental questions for mesoscopic quantum systems. Precision metrology of gravitational fields have a number of fundamental and technological applications, including gravitational-wave astronomy and small-mass sensing, as well as improved earthquake detection arrays and geological surveys. Regarding low-energy tests of quantum gravity, the prospect of detecting gravity-mediated entanglement or noise signatures of quantised gravitational fields has the potential to shed light on some of the most fundamental questions in physics. The developed tools will allow me to carefully analyse the required experimental conditions, from which I can propose novel protocols and identify the optimal parameter regimes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

STOCKHOLMS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 203 852,16
Address
UNIVERSITETSVAGEN 10
10691 Stockholm
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 203 852,16
My booklet 0 0