Project description
Innovative techniques for safe driving
An improved understanding of drivers' profiles and driving pattern identification could enhance the safety of conventional drivers and human-mimic autonomous vehicles. Driving behaviour analytics rely mainly on the analysis of traffic accident data arising from human factors. The EU-funded RHAPSODY project will introduce a new approach to driving behaviour models by identifying unsafe and optimal driving behaviour. The project will analyse the dynamic evolution of driving behaviour on macro and microscopic levels through machine learning and artificial intelligence techniques applied to existing European naturalistic driving data. To recognise the benchmarks of optimal driving and investigate the conditions favouring best driving performance, RHAPSODY will identify different driver profiles, driving patterns, and their response to rapid changes under diverse conditions.
Objective
Driving behaviour analytics is an emerging field with new potential for addressing the human factors that are persistently causing a huge burden of traffic injuries. However, there is need for new insights regarding driving profiles and patterns identification and a robust relevant methodology is lacking. The objective of RHAPSODY is to provide evidence for a shift of focus in driving behaviour models, targeting to identify not only the unsafe but also the optimal driving, through the analysis of the dynamic evolution of driving behaviour on both macro- and microscopic levels. Machine learning (ML) and artificial intelligence (AI) techniques will be applied on existing European naturalistic driving data to identify different driver profiles and driving patterns, their rapid changes under different conditions and their variability over individual drivers and populations. Ultimately, RHAPSODY will recognize the benchmarks of optimal driving and investigate the conditions under which drivers may demonstrate best performance. These can be applied for the improvement of safety of both conventional drivers and human-mimic autonomous vehicles (AVs).
Hosted at Delft University of Technology, RHAPSODY will allow the Fellow to enhance his individual competences by acquiring new skills on transport safety analysis, AVs, human factors, data management, AI and ML, as well as on responsible innovation, impact creation and commercialization. RHAPSODY will thus strongly benefit his interdisciplinary expertise and ensure his high employability as a transportation R&D data scientist.
A two-way transfer of knowledge is guaranteed since RHAPSODY combines his expertise in transportation data analysis with the host’s expertise in safety, human factors and responsible AI application. Therefore, RHAPSODY will contribute to Europe’s knowledge-based growth and societal benefit, through both its novel research outputs and the development of a highly skilled Fellow on transport safety.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science
- engineering and technology mechanical engineering vehicle engineering automotive engineering autonomous vehicles
- natural sciences computer and information sciences artificial intelligence machine learning
- social sciences psychology ergonomics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN Delft
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.