Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Detector Array Readout with Traveling Wave AmplifieRS

Project description

Increasing the sensitivity of low-noise superconducting detectors

Reducing the noise of detectors to the quantum limit over a large bandwidth will be critical to applications including neutrino mass measurement, cosmic microwave background measurement and dark matter detection. Travelling-wave parametric amplifiers harnessing superconductivity could meet the need for quantum-limited amplifiers with large bandwidths. With the support of the Marie Skłodowska-Curie Actions programme, the DARTWARS project is investigating novel materials and engineering techniques to improve the performance and reliability of these amplifiers. The team plans to demonstrate techniques that could increase the sensitivity of future particle physics experiments and thus our likelihood of detecting signals that will shine new light on the workings of our universe.

Objective

The aim of the DART WARS project is to boost the sensitivity of experiments based on low-noise superconducting detectors. This goal will be reached through the development of wideband superconducting amplifiers with noise at the quantum limit and the implementation of a quantum limited read out in different types of superconducting detectors. Noise at the quantum limit over a large bandwidth is a fundamental requirement for challenging future applications, like neutrino mass measurement, next generation x-ray observatory, cosmic microwave background (CMB) measurement, and dark matter and axion detection. The sensitivity and the bandwidth of microcalorimeter detectors such as Transition Edge Sensors (TESs) and Microwave Kinetic Inductance Detectors (MKIDs) using dissipative readout are limited by the noise temperature and bandwidth of the cryogenic amplifier. Likewise, resonant axion detectors, such as haloscopes, must probe a range of frequencies of several GHz keeping the system noise to the lowest possible level. The need for a quantum limited microwave amplifier with large bandwidth operating at millikelvin temperatures is also particularly felt in many quantum technology applications, for example the rapid high-fidelity multiplexed readout of superconducting qubits. To this end, devices called traveling wave parametric amplifiers (TWPAs) are currently being developed. The nonlinear element of TWPAs is provided by Josephson junctions or by the kinetic inductance of a high-resistivity superconductor.The DART WARS project is a research effort to improve the performance and reliability of these amplifiers with the study of new materials and with improved microwave and thermal engineering. The long-term goal is to demonstrate, for the first time, the readout with different sensors (TESs, MKIDs, microwave cavities) opening the concrete possibility to increase the sensitivity of the next generation particle physics experiments..

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 251 002,56
Address
PIAZZA DELL'ATENEO NUOVO 1
20126 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 251 002,56

Partners (1)

My booklet 0 0