Project description
Single-cell technology helps to define sources of nucleotide de novo synthesis
Nucleotide de novo synthesis (DNS) is essential for cell proliferation, and its disruption is detrimental to rapidly multiplying cancer cells. Anti-nucleotide therapy was one of the first approaches to treat cancer, but DNS can be bypassed by the uptake of extracellular nucleotides or through the recycling pathways, limiting therapy efficacy. The cellular sources of nucleotides in normal tissue and tumours in vivo have not yet been adequately characterised; this is the main goal of the EU-funded MetaCross project, in addition to understanding the adaptations to DNS blockade in cancer. The research will involve an integrative in vivo approach using single-cell technology combined with single-cell omics analysis, advanced bioinformatics and state-of-the-art mouse models.
Objective
DNA synthesis is essential for cell proliferation. Nucleotides, the basic building blocks of nucleic acids, are made by nucleotide de novo synthesis (DNS), and DNS disruption is detrimental to rapidly proliferating cancer cells. Established >70 years ago, anti-nucleotide therapy was one of the first approaches to treat cancer, but it suffers high rate of resistance and relapse. DNS can be bypassed by an uptake of extracellular nucleotides or by recycling in salvage pathways, possibly a reason for limited efficacy of anti-nucleotide therapy. To date, the cellular sources of nucleotides in normal tissue and in tumors in vivo remain poorly characterized. The central goal of this project is to define these nucleotide sources, understand the intercellular metabolic crosstalk of nucleotides in tumors, and characterize the adaptations to DNS blockade in cancer and stromal cells. To reach these goals, I will use the totally new perspective brought by the single cell technology and combine my expertise in single cell omics and metabolism with the state-of-the-art mouse models and advanced bioinformatics available at the host institute. I propose an integrative in vivo approach using single cell RNA-sequencing, which in combination with genetic interventions will allow me to resolve dynamic expression profiles of individual cell types. I will use inducible mouse models to selectively disable DNS in the stroma (lungs of a host animal) and in cancer cells (orthotopic tumors from syngeneic DNS-deficient lung cancer cells) to generate tumors fully relying on nucleotides from internal or external sources, respectively. In parallel, I will perform in vivo CRISPR screen to identify genes whose lack represents a targetable metabolic dependency of DNS-disabled cancer cells. This innovative approach will shed novel insights into organization of tumor metabolic homeostasis and identify new targets with the potential to make major breakthrough in anti-nucleotide intervention in cancer.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences cell biology cell metabolism
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences genetics nucleotides
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
252 50 Vestec
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.