Project description
AI for hydrogen-derived carbon-neutral synthetic fuels
EU policies envisage the transition of the transport sector from fossil fuels to clean energy. Hydrogen derived carbon-neutral synthetic fuels produced using renewable energy sources present less life-cycle CO2 footprint than electric vehicles and are suitable for combustion engines. However, existing fuel spray experimental methods prevent the wide use of e-fuels. The EU-funded AI-FIE project is a Marie Skłodowska-Curie Actions fellowship aiming to develop a data-driven, deep learning and AI algorithm to predict the spatially and temporally resolved spray structure and critical parameters for engine design. The innovative project will base training on the most extensive publicly available experimental database for fuel sprays of the Engine Combustion Network.
Objective
Current EU policies mandate the gradual disengagement of the transport sector from fossil fuels. In order for such a transition to become a reality, hydrogen-derived carbon-neutral synthetic fuels produced using renewable energy sources (e-fuels), have overall less life-cycle CO2 footprint than their counterpart electric vehicles while they are suitable for use over the wide range of combustion engines. However, today’s fuel spray experimental methods are compromised by the long time needed for the characterisation of the effect of new fuel molecules; similarly, relevant predictive models that can address in detail the effect of the wide range of fuel chemical composition at time scales relevant to industry are not available. The main objective of the proposed MSCA fellowship is the development of a data-driven deep learning (DL) Artificial Intelligence (AI) algorithm able to predict the spatially and temporally resolved spray structure, as well as critical air / fuel mixture parameters for engine design. Training of the AI model will be based on the largest publicly available experimental database for fuel sprays of the Engine Combustion Network; this covers a wide range of injector configurations, air thermodynamic conditions and liquid fuels. The training matrix of the AI algorithm will be complemented by relevant computational fluid dynamics simulations for operating conditions and fuel composition for which experimentation is not possible. For this purpose, a state-of-the-art CFD model of the compressible Navier-Stokes and energy conservation equations employing elaborate real-fuel thermodynamic closures based on the PC-SAFT equation of state will be employed. The project innovative nature spans across diverse research aspects with emphasis on renewable alternatives of Diesel and gasoline. As such, it is expected to assist EU energy, marine, aviation and automotive industries to meet the goals imposed regarding the utilisation of renewable fuels.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels liquid fuels
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology mechanical engineering vehicle engineering automotive engineering
- engineering and technology environmental engineering energy and fuels synthetic fuels
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EC1V 0HB LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.