Descripción del proyecto
Inteligencia artificial para unos combustibles sintéticos derivados del hidrógeno con cero emisiones netas
Las políticas de la Unión Europea prevén la transición del sector del transporte de los combustibles fósiles a la energía limpia. Los combustibles sintéticos obtenidos del hidrógeno con cero emisiones netas producidos empleando fuentes de energía renovable presentan una menor huella de CO2 del ciclo de vida que los vehículos eléctricos y son aptos para los motores de combustión. Sin embargo, los métodos experimentales existentes de pulverización del combustible impiden un uso generalizado de los electrocombustibles. El proyecto AI-FIE, financiado con fondos europeos, es una beca de investigación de las Acciones Marie Skłodowska-Curie que tiene como objetivo desarrollar un algoritmo de inteligencia artificial y aprendizaje profundo basado en datos para predecir, con resolución espacial y temporal, la estructura del pulverizador y los parámetros críticos para el diseño de motores. Este proyecto innovador basará la formación en la base de datos experimental de acceso público más amplia sobre pulverización de combustible de la Engine Combustion Network.
Objetivo
Current EU policies mandate the gradual disengagement of the transport sector from fossil fuels. In order for such a transition to become a reality, hydrogen-derived carbon-neutral synthetic fuels produced using renewable energy sources (e-fuels), have overall less life-cycle CO2 footprint than their counterpart electric vehicles while they are suitable for use over the wide range of combustion engines. However, today’s fuel spray experimental methods are compromised by the long time needed for the characterisation of the effect of new fuel molecules; similarly, relevant predictive models that can address in detail the effect of the wide range of fuel chemical composition at time scales relevant to industry are not available. The main objective of the proposed MSCA fellowship is the development of a data-driven deep learning (DL) Artificial Intelligence (AI) algorithm able to predict the spatially and temporally resolved spray structure, as well as critical air / fuel mixture parameters for engine design. Training of the AI model will be based on the largest publicly available experimental database for fuel sprays of the Engine Combustion Network; this covers a wide range of injector configurations, air thermodynamic conditions and liquid fuels. The training matrix of the AI algorithm will be complemented by relevant computational fluid dynamics simulations for operating conditions and fuel composition for which experimentation is not possible. For this purpose, a state-of-the-art CFD model of the compressible Navier-Stokes and energy conservation equations employing elaborate real-fuel thermodynamic closures based on the PC-SAFT equation of state will be employed. The project innovative nature spans across diverse research aspects with emphasis on renewable alternatives of Diesel and gasoline. As such, it is expected to assist EU energy, marine, aviation and automotive industries to meet the goals imposed regarding the utilisation of renewable fuels.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ingeniería y tecnología ingeniería ambiental energía y combustibles combustibles líquidos
- ingeniería y tecnología ingeniería ambiental energía y combustibles energía renovable
- ingeniería y tecnología ingeniería mecánica ingeniería de vehículos ingeniería automotriz
- ingeniería y tecnología ingeniería ambiental energía y combustibles combustibles sintéticos
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático aprendizaje profundo
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2020
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
EC1V 0HB LONDON
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.