Project description
The genetic determinants of plant adaptation to climate change
Understanding how plants adapt to hot and dry climates necessitates better insight into their genetics. It is widely believed that selection of plant traits suitable for specific habitats takes place through chromosome reorganisation. However, plants maintain low chromosome numbers overall. To investigate this hypothesis, the EU-funded CondensDrought project will study the genetic distribution of genes that allow plants to adapt to extreme habitats. Results will provide fundamental insight into the determinants of evolutionary success and phenotypic adaptation. Importantly, CondensDrought will lay the foundation for comprehending how plants respond to climate change.
Objective
The structure and function of plant genomes have been marked by a history of repeated cycles of whole genome duplications followed by diploidization. Despite the number of duplications in their ancestry, most extant plants, particularly herbaceous groups, exhibit low chromosome numbers (e.g. five pairs in Arabidopsis), but the drivers of this descending dysploidy remain little understood. The project will test a classical hypothesis from early in the last century that chromosomal reorganization is driven by selection to create linkage groups favourable for a particular habitat. To address this, I will focus on Nicotiana sect. Suaveolentes, a group with variable ecologies, including adaptation to deserts, and series of chromosome reductions. I will focus of species pairs including a species with higher chromosome number that prefers mesic habitats, and a related species with lower chromosome number that is adapted to extreme arid conditions. I plan to investigate if genes responsible for adaptation to extreme habitats are associated with genomic rearrangements, and in particular test if these genes tend to cluster within fewer linkage blocks than expected by chance. This action will obtain a comprehensive understanding about the contributions of post-WGD processes to evolutionary success and phenotypic novelty, providing new information on how genomic reorganization contributes to adaptation, speciation and adaptive radiation. It will also provide details on genes associated with adaptation to hot, dry habitats, important for understanding plant responses to climate change.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- humanities history and archaeology history
- natural sciences biological sciences ecology
- natural sciences biological sciences genetics chromosomes
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1010 WIEN
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.