Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

ENhancing and prObing Strong light-matter Interactions in 2D materials by ultrafaSt optical techniques

Description du projet

Des interactions lumière-matière fortes dans les matériaux 2D grâce à des techniques optiques ultrarapides

En raison de leurs propriétés extraordinaires, les monocouches de dichalcogénures de métaux de transition (TMD en anglais) sont considérées comme des matériaux idéaux pour divers dispositifs optoélectroniques, et peuvent être empilées pour former des hétérostructures présentant des propriétés encore plus riches. De plus, les porteurs de charge dans les TMD présentent un degré de liberté de vallée, se comportant comme un pseudospin. Les TMD interagissant fortement avec la lumière dans des microcavités pourraient produire d’autres phénomènes remarquables tels que l’effet laser à de faibles seuils de puissance et des macro-états quantiques connus sous le nom de condensats de Bose-Einstein. Le projet ENOSIS, financé par l’UE, combinera des techniques optiques avancées, notamment la spectroscopie ultrarapide et la microscopie hyperspectrale, pour étudier la dynamique du couplage fort lumière-matière dans des microcavités contenant des monocouches de TMD et leurs hétérostructures, en vue de créer de nouveaux dispositifs photoniques non linéaires et quantiques.

Objectif

Strong coupling (SC) between light and matter in microcavities has shown to produce striking phenomena such as lasing at low power thresholds, Bose-Einstein condensation (BEC) and superfluidity in the solid state. Embedding transitional metal dichalcogenides (TMDs) monolayers and their heterostructures (HSs) with valley pseudo-spin degree of freedom in microcavities could bring enormous advantages. ENOSIS will enable and enhance the most favourable properties of SC in TMD-based devices, by investigating novel structures with advanced optical techniques relying on ultrafast spectroscopy and hyperspectral microscopy. To this aim, microcavities embedding TMD monolayers and HSs will be fabricated and characterized by developing new microscopy tools, which can provide fast and comprehensive information about the morphological and spectral properties of the samples. Ultrafast spectroscopic techniques will then reveal the subtle mechanisms behind the valley polarization enhancement in TMDs in the SC regime, towards a further increase of valley coherence time. Strong non-linear phenomena could then be observed in these structures for the first time, eventually resulting in BEC at high temperatures. ENOSIS will equip the Researcher with new knowledge and skills in ultrafast optical science and technology, thus broadening his scientific background and enhancing his prospects as an independent researcher. At the same time, the Action and the Host Institution will benefit from the advanced knowledge in 2D materials and strong light-matter interactions acquired by the Researcher during his scientific career. ENOSIS promises to open new horizons for 2D materials in optoelectronics, by enhancing their properties through strong light-matter interactions, creating novel highly non-linear optical devices which could become the building blocks for future optical circuits and computers.

Coordinateur

POLITECNICO DI MILANO
Contribution nette de l'UE
€ 171 473,28
Adresse
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italie

Voir sur la carte

Région
Nord-Ovest Lombardia Milano
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 171 473,28