Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

ENhancing and prObing Strong light-matter Interactions in 2D materials by ultrafaSt optical techniques

Descrizione del progetto

Forti interazioni luce-materia in materiali 2D con tecniche ottiche ultraveloci

Grazie alle loro straordinarie proprietà, i monostrati di dicalcogenuri dei metalli di transizione sono considerati materiali ideali per vari dispositivi optoelettronici e possono essere impilati per formare eterostrutture che mostrano proprietà ancora più ricche. Inoltre, i portatori di carica nei dicalcogenuri dei metalli di transizione esibiscono un grado di libertà a valle, comportandosi come pseudospin. I dicalcogenuri dei metalli di transizione che interagiscono fortemente con la luce in microcavità potrebbero produrre ulteriori fenomeni sorprendenti, tra cui l’emissione di raggi laser a soglie di bassa potenza e macrostati quantistici noti come condensati di Bose-Einstein. Il progetto ENOSIS, finanziato dall’UE, combinerà tecniche ottiche avanzate, tra cui la spettroscopia ultraveloce e la microscopia iperspettrale, per studiare la dinamica del forte accoppiamento luce-materia in microcavità che incorporano monostrati di dicalcogenuri dei metalli di transizione e le loro eterostrutture, verso la creazione di nuovi dispositivi non lineari e fotonici quantistici.

Obiettivo

Strong coupling (SC) between light and matter in microcavities has shown to produce striking phenomena such as lasing at low power thresholds, Bose-Einstein condensation (BEC) and superfluidity in the solid state. Embedding transitional metal dichalcogenides (TMDs) monolayers and their heterostructures (HSs) with valley pseudo-spin degree of freedom in microcavities could bring enormous advantages. ENOSIS will enable and enhance the most favourable properties of SC in TMD-based devices, by investigating novel structures with advanced optical techniques relying on ultrafast spectroscopy and hyperspectral microscopy. To this aim, microcavities embedding TMD monolayers and HSs will be fabricated and characterized by developing new microscopy tools, which can provide fast and comprehensive information about the morphological and spectral properties of the samples. Ultrafast spectroscopic techniques will then reveal the subtle mechanisms behind the valley polarization enhancement in TMDs in the SC regime, towards a further increase of valley coherence time. Strong non-linear phenomena could then be observed in these structures for the first time, eventually resulting in BEC at high temperatures. ENOSIS will equip the Researcher with new knowledge and skills in ultrafast optical science and technology, thus broadening his scientific background and enhancing his prospects as an independent researcher. At the same time, the Action and the Host Institution will benefit from the advanced knowledge in 2D materials and strong light-matter interactions acquired by the Researcher during his scientific career. ENOSIS promises to open new horizons for 2D materials in optoelectronics, by enhancing their properties through strong light-matter interactions, creating novel highly non-linear optical devices which could become the building blocks for future optical circuits and computers.

Coordinatore

POLITECNICO DI MILANO
Contribution nette de l'UE
€ 171 473,28
Indirizzo
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italia

Mostra sulla mappa

Regione
Nord-Ovest Lombardia Milano
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 171 473,28