Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

ENhancing and prObing Strong light-matter Interactions in 2D materials by ultrafaSt optical techniques

Descripción del proyecto

Interacciones fuertes entre la luz y la materia en materiales bidimensionales con técnicas ópticas ultrarrápidas

Gracias a sus extraordinarias propiedades, las monocapas de dicalcogenuros de metales de transición (DMT) se consideran materiales ideales para diversos dispositivos optoelectrónicos, y se pueden apilar para formar heteroestructuras con propiedades más ricas. Además, los portadores de cargas en los DMT muestran un grado de libertad de valle (extremos de energía local), por lo que se comportan como pseudospines. Los DMT que presentan una interacción fuerte con la luz en microcavidades podrían producir un fenómeno todavía más sorprendente, como una acción láser a umbrales de baja potencia y macroestados cuánticos denominados «condensados de Bose-Einstein». El proyecto ENOSIS, financiado con fondos europeos, combinará técnicas ópticas avanzadas, como la espectroscopia ultrarrápida y la microscopía hiperespectral, para investigar la dinámica del acoplamiento fuerte entre la luz y la materia en microcavidades que incorporan monocapas de DMT y sus heteroestructuras, con el objetivo de crear nuevos dispositivos fotónicos cuánticos y no lineares.

Objetivo

Strong coupling (SC) between light and matter in microcavities has shown to produce striking phenomena such as lasing at low power thresholds, Bose-Einstein condensation (BEC) and superfluidity in the solid state. Embedding transitional metal dichalcogenides (TMDs) monolayers and their heterostructures (HSs) with valley pseudo-spin degree of freedom in microcavities could bring enormous advantages. ENOSIS will enable and enhance the most favourable properties of SC in TMD-based devices, by investigating novel structures with advanced optical techniques relying on ultrafast spectroscopy and hyperspectral microscopy. To this aim, microcavities embedding TMD monolayers and HSs will be fabricated and characterized by developing new microscopy tools, which can provide fast and comprehensive information about the morphological and spectral properties of the samples. Ultrafast spectroscopic techniques will then reveal the subtle mechanisms behind the valley polarization enhancement in TMDs in the SC regime, towards a further increase of valley coherence time. Strong non-linear phenomena could then be observed in these structures for the first time, eventually resulting in BEC at high temperatures. ENOSIS will equip the Researcher with new knowledge and skills in ultrafast optical science and technology, thus broadening his scientific background and enhancing his prospects as an independent researcher. At the same time, the Action and the Host Institution will benefit from the advanced knowledge in 2D materials and strong light-matter interactions acquired by the Researcher during his scientific career. ENOSIS promises to open new horizons for 2D materials in optoelectronics, by enhancing their properties through strong light-matter interactions, creating novel highly non-linear optical devices which could become the building blocks for future optical circuits and computers.

Coordinador

POLITECNICO DI MILANO
Aportación neta de la UEn
€ 171 473,28
Dirección
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italia

Ver en el mapa

Región
Nord-Ovest Lombardia Milano
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 171 473,28