Project description
A cryogenic approach to assessing the spectral shape of beta particles
The neutrinoless double beta decay is a theoretical radioactive decay process that would prove that neutrinos are their own antiparticles. Funded by the Marie Skłodowska-Curie Actions programme, the ACCESS project plans to develop a new technique to perform precision measurements of such forbidden beta decays. The spectral shape of beta particles is a crucial benchmark for nuclear physics calculations and for astroparticle physics experiments. ACCESS will provide groundbreaking insight to evaluate the nuclear matrix elements for the neutrinoless double beta decay. To this end, it will operate a pilot array of four tellurium dioxide crystals as cryogenic calorimeters.
Objective
ACCESS aims to establish a new technique to perform precision measurements of forbidden beta-decays, whose spectral shape is a crucial benchmark for Nuclear Physics calculations and plays a pivotal role in Astroparticle Physics experiments. When fundamental conservation laws strongly suppress a beta decay, it features a high transferred momentum, as in the case of neutrinoless double-beta decay (NLDBD). Relying on this similarity, ACCESS will provide groundbreaking insights to evaluate Nuclear Matrix Elements for NLDBD. ACCESS will operate a pilot array of four tellurium dioxide crystals as cryogenic calorimeters. Three of them will be doped with different beta emitters, while the last natural one will be used for effective background subtraction. My experience with cryogenic calorimeters based on semiconductor sensors (i.e. NTD) will be a solid basement for the project, but an essential piece of the puzzle is still missing. ACCESS requires high statistical measurements in an ultra-clean underground cryostat, available for limited time slots. A fast detector is mandatory to collect the required number of signals, keeping the background low, and avoiding the pileup due to the high counting rate. To fulfill this requirement, I will complete my training during the first two years of the action at Queen’s University. Here I will learn to build and operate bolometers based on superconductive sensors (i.e. TES), among the faster sensors used in Astroparticle Physics. I will transfer my NTD-oriented expertise to the local group, and together we will integrate these two sensors for a novel application. In the last year, I will move to GSSI, a research center of excellence recently established in Italy. Here I will perform the final measurements at LNGS (Gran Sasso National Laboratory), a world-leading underground research infrastructure of INFN. My new skills and research network will enrich the local astroparticle group, extending its research field also to Nuclear Physics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences inorganic chemistry metalloids
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
67100 L'Aquila
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.