European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Machine Learning-aided Multiscale Modelling Framework for Polymer Membranes

Descripción del proyecto

Hacia un diseño de membrana polimérica más eficiente

El proyecto ML-MULTIMEM, financiado por las Acciones Marie Skłodowska-Curie, tiene como objetivo la integración de algoritmos de inteligencia artificial en las metodologías de simulación molecular multiescala para polímeros, para promover la innovación de las membranas basadas en polímeros para la reducción de emisiones de gases de efecto invernadero. Se desarrollará una estrategia de simulación jerárquica para modelar, de forma eficiente, propiedades de materiales a varias escalas: atómica, mesoscópica y macroscópica. El método de modelización con ayuda del aprendizaje automático se utilizará para extraer sistemáticamente representaciones precisas de grano grueso y campos de fuerzas para sistemas poliméricos, lo que ampliará la aplicabilidad y generalización de estas técnicas de simulación molecular a un intervalo de sistemas químicos complejos importantes para varias aplicaciones críticas. Las simulaciones moleculares también se combinarán con modelos continuos para el desarrollo de un marco predictivo general multicomponente.

Objetivo

The goal of this project is to build a systematic modelling framework for advanced polymer materials, that are widely employed in numerous membrane separation applications, especially as gas separation media for carbon capture. Polymers are very challenging to simulate, due to the wide range of timescales that are present in these systems and require elaborate system-specific multiscale strategies. A hierarchical simulation strategy will be developed, encompassing atomistic, mesoscopic and continuum scales, integrating machine learning techniques. The artificial intelligence aided multi-scale approach proposed constitutes a generalized methodology for the efficient computational study of polymers. The synergy of unsupervised machine learning (ML) clustering techniques and neural networks (NN), will enable the extraction of accurate coarse-grained (CG) representations and force fields of the polymer systems, bringing this complex problem within computational reach. Optimized ML models will be integrated into Molecular Dynamics and innovative Monte Carlo simulations at the CG level, with the latter enabling the equilibration up to high molecular weight of polymers of complex chemical constitution, and the prediction of their micro- and macroscopic behaviour. Molecular simulation results will be integrated into macroscopic equation-of-state-based models, resulting in a bottom-up determination of the relevant process parameters for membrane separations (permeability and selectivity) in a wide range of conditions, for pure gases and gas mixtures. Systematic hierarchical modelling provides unique property prediction means, simultaneously shedding light on the mechanisms that are responsible for the materials end-use performance. This is a stepping stone towards the rational design of advanced processes from the molecular level all the way up to industrial applications, which in the present case involve novel separation technologies with great environmental impact.

Coordinador

"NATIONAL CENTER FOR SCIENTIFIC RESEARCH ""DEMOKRITOS"""
Aportación neta de la UEn
€ 153 085,44
Dirección
END OF PATRIARCHOU GRIGORIOU E AND 27 NEAPOLEOS STREET
15341 Agia Paraskevi
Grecia

Ver en el mapa

Región
Αττική Aττική Βόρειος Τομέας Αθηνών
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 153 085,44