Project description
Towards more efficient polymer membrane design
Funded by the Marie Skłodowska-Curie Actions programme, the ML-MULTIMEM project targets the integration of AI algorithms in multiscale molecular simulation methodologies for polymers, to advance innovation in polymer-based membranes for greenhouse gas emissions reduction. A hierarchical simulation strategy will be developed to efficiently model materials' properties at multiple scales: atomic, mesoscopic and macroscopic. The machine learning-aided modelling approach will be used to systematically extract accurate coarse-grained representations and force fields for polymer systems, extending the applicability and generalisation of these novel molecular simulation techniques to a range of complex chemical systems important for several critical applications. Molecular simulations will be also coupled with continuum models for the development of a general multicomponent predictive framework.
Objective
The goal of this project is to build a systematic modelling framework for advanced polymer materials, that are widely employed in numerous membrane separation applications, especially as gas separation media for carbon capture. Polymers are very challenging to simulate, due to the wide range of timescales that are present in these systems and require elaborate system-specific multiscale strategies. A hierarchical simulation strategy will be developed, encompassing atomistic, mesoscopic and continuum scales, integrating machine learning techniques. The artificial intelligence aided multi-scale approach proposed constitutes a generalized methodology for the efficient computational study of polymers. The synergy of unsupervised machine learning (ML) clustering techniques and neural networks (NN), will enable the extraction of accurate coarse-grained (CG) representations and force fields of the polymer systems, bringing this complex problem within computational reach. Optimized ML models will be integrated into Molecular Dynamics and innovative Monte Carlo simulations at the CG level, with the latter enabling the equilibration up to high molecular weight of polymers of complex chemical constitution, and the prediction of their micro- and macroscopic behaviour. Molecular simulation results will be integrated into macroscopic equation-of-state-based models, resulting in a bottom-up determination of the relevant process parameters for membrane separations (permeability and selectivity) in a wide range of conditions, for pure gases and gas mixtures. Systematic hierarchical modelling provides unique property prediction means, simultaneously shedding light on the mechanisms that are responsible for the materials end-use performance. This is a stepping stone towards the rational design of advanced processes from the molecular level all the way up to industrial applications, which in the present case involve novel separation technologies with great environmental impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences polymer sciences
- engineering and technology chemical engineering separation technologies
- natural sciences physical sciences molecular and chemical physics
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
15 341 AGIA PARASKEVI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.