Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Machine Learning-aided Multiscale Modelling Framework for Polymer Membranes

Projektbeschreibung

Effizienteres Polymermembranen-Design

Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt ML-MULTIMEM hat die Einbindung von Algorithmen der künstlichen Intelligenz in Mehrskalen-Molekularsimulationsverfahren für Polymere zum Ziel, um Innovationen bei Membranen auf Polymerbasis zum Zweck der Reduzierung von Treibhausgasemissionen voranzubringen. Es wird eine hierarchische Simulationsstrategie entwickelt, um die Eigenschaften von Materialien auf mehreren Ebenen auf effiziente Weise zu modellieren: atomar, mesoskopisch und makroskopisch. Der durch maschinelles Lernen unterstützte Modellierungsansatz wird dazu dienen, systematisch genaue grobkörnige Darstellungen und Kraftfelder für Polymersysteme zu extrahieren, um die Anwendbarkeit und Verallgemeinerung dieser neuartigen molekularen Simulationsverfahren auf eine Reihe komplexer chemischer Systeme zu erweitern, die für verschiedene kritische Anwendungen wichtig sind. Außerdem werden molekulare Simulationen mit Kontinuumsmodellen gekoppelt, um einen allgemeinen Rahmen für die Mehrkomponentenvorhersage zu entwickeln.

Ziel

The goal of this project is to build a systematic modelling framework for advanced polymer materials, that are widely employed in numerous membrane separation applications, especially as gas separation media for carbon capture. Polymers are very challenging to simulate, due to the wide range of timescales that are present in these systems and require elaborate system-specific multiscale strategies. A hierarchical simulation strategy will be developed, encompassing atomistic, mesoscopic and continuum scales, integrating machine learning techniques. The artificial intelligence aided multi-scale approach proposed constitutes a generalized methodology for the efficient computational study of polymers. The synergy of unsupervised machine learning (ML) clustering techniques and neural networks (NN), will enable the extraction of accurate coarse-grained (CG) representations and force fields of the polymer systems, bringing this complex problem within computational reach. Optimized ML models will be integrated into Molecular Dynamics and innovative Monte Carlo simulations at the CG level, with the latter enabling the equilibration up to high molecular weight of polymers of complex chemical constitution, and the prediction of their micro- and macroscopic behaviour. Molecular simulation results will be integrated into macroscopic equation-of-state-based models, resulting in a bottom-up determination of the relevant process parameters for membrane separations (permeability and selectivity) in a wide range of conditions, for pure gases and gas mixtures. Systematic hierarchical modelling provides unique property prediction means, simultaneously shedding light on the mechanisms that are responsible for the materials end-use performance. This is a stepping stone towards the rational design of advanced processes from the molecular level all the way up to industrial applications, which in the present case involve novel separation technologies with great environmental impact.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2020

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

"NATIONAL CENTER FOR SCIENTIFIC RESEARCH ""DEMOKRITOS"""
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 153 085,44
Adresse
END OF PATRIARCHOU GRIGORIOU E AND 27 NEAPOLEOS STREET
15 341 AGIA PARASKEVI
Griechenland

Auf der Karte ansehen

Region
Αττική Aττική Βόρειος Τομέας Αθηνών
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 153 085,44
Mein Booklet 0 0