Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

high-EfficienT piEzoelectRic vibratioN energy hArvester for raiL track system

Project description

Solutions for rail track maintenance and monitoring

Railway networks are at the core of modern commerce, trade, and transport. Their maintenance and development are particularly important for a vast number of private and industrial sectors. Due to their complex interaction with rolling stocks, railway tracks are at risk of structural degradation over time, posing a threat to railway operations and passenger safety. Modern sensors and Information and communication technologies (ICT) could provide better monitoring over track and train maintenance. Also, their need for batteries or larger power sources makes them sub-optimal. The EU-funded ETERNAL project will address this issue through highly efficient piezoelectric vibration energy harvesters for the rail track sensor system.

Objective

Railway track and rolling stock interact with each other, forming a complex dynamic system which leads to structural degradation of railway assets with time, as such, pose a threat to not only safety, but comfortable rail operations. Modern ICT and sensing technologies could ensure a safe, secure and efficient transport network. However, greater connectivity and sensor coverage along tracks which require no mains power or batteries for energy supply, eliminating the costs for cabling and battery replacement, and minimum gateway installations, are critical for the success of industry adoptions. As such, the ETERNAL fellowship is providing a solution towards to the development of self-powered Internet-of-Things (IoT) devices for railway system by harvesting the vibration energy when the train travels. Through new, insightful laboratory investigations supported by numerical simulations, a vibration-based piezoelectric energy harvesting prototype is developed for the railway system. ETERNAL establishes inner links between the excitation source and the component natural frequency in rail track systems, and develops the piezoelectric ceramics by combining texturing process and multilayered structure together, which take the functionality (large output current, high energy density, low cost, and high mechanical strength) of the piezoelectric vibration energy harvester (PVEH) to the next level. This fellowship advances the underpinning technology for developing an energy harvester with the ultimate goal of developing self-powered IoT devices, which expected to transform rail track monitoring capability and ensure a more sustainable railway development in the 21st century, in the EU and internationally.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2020

See all projects funded under this call

Coordinator

UNIVERSITY OF WARWICK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 337 400,64
Address
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
United Kingdom

See on map

Region
West Midlands (England) West Midlands Coventry
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 337 400,64
My booklet 0 0