Project description
Optimisation of fucoxanthin production in diatom microalgae
Recent trends in health and disease prevention have led to an increase in the demand for naturally synthesised nutraceuticals, particularly the carotenoid fucoxanthin. Diatom microalgae belonging to the Phaeodactylum genus synthesise high amounts of fucoxanthin, making them one of the most promising candidates for sustainable production. Funded by the Marie Skłodowska-Curie Actions programme, the FUCOMICS project aims to develop an integrated omics platform to better understand fucoxanthin synthesis and identify regulatory elements/genes for enhancing this process in the Norwegian isolate Phaeodactylum tricornutum B58. Culture conditions will be optimised for maximum fucoxanthin synthesis using response surface methodology, and the identified regulators will be validated via advanced CRISPR-Cas9 technology.
Objective
The growing awareness towards health and disease prevention holds a great future globally for naturally derived nutraceuticals. This has led to a dramatic increase in demands of naturally synthesized carotenoids, particularly fucoxanthin.
This golden-brown carotenoid is used as anti-oxidant, anti-cancer, anti-diabetic, and anti-obesity component making it a valuable product for nutraceutical and food industries. Diatoms, particularly Phaeodactylum, naturally synthesize fucoxanthin in high amounts as compared to their counterparts (seaweeds), making them one of the most promising candidates for sustainable fucoxanthin production. However, to exploit these diatoms for commercial fucoxanthin production, highly productive strains capable of growing at low operational costs along with a detailed understanding of the fucoxanthin biosynthesis pathway to steer conditions towards most favourable for high yields are imperative. To this end, FUCOMICS will develop an integrated omics pipeline (transcriptomics and proteomics) to gain insight into fucoxanthin synthesis and identify key regulatory elements/genes for enhancing fucoxanthin synthesis in the local Norwegian isolate Phaeodactylum tricornutum B58. Further, by utilizing Response Surface Methodology culture conditions will be optimized for maximum fucoxanthin synthesis. The identified key regulatory elements/genes will be validated by generating engineered strains of P.
tricornutum B58 using the advanced CRISPR/Cas 9 technique. The results generated by FUCOMICS will not only be a starting step towards commercialization of microalgal fucoxanthin, but can also act as foundation for more difficult components, such as omega-3 fatty acids and biomass as whole. Furthermore, the fucoxanthin-extracted biomass, still rich in omega-3 fatty acids, can be utilized as feedstock for aquaculture, a major industry in Norway. As such, this project is in line with the EU strategy for the sustainable development of algae and aquaculture.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- agricultural sciences agriculture, forestry, and fisheries fisheries
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences microbiology phycology
- natural sciences biological sciences biochemistry biomolecules lipids
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5020 Bergen
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.