CORDIS - Résultats de la recherche de l’UE
CORDIS

The role of mitonuclear interactions in thermal and dietary adaptation

Description du projet

Interaction des génomes mitochondrial et nucléaire dans un environnement changeant

Les mitochondries fournissent de l’énergie et des composants pour la biosynthèse cellulaire. Elles aident également la cellule à résister au stress et à l’apoptose. L’équilibre entre ces processus est déterminé par l’interaction des génomes mitochondrial et nucléaire, les déséquilibres entraînant une diminution des capacités physiques. MitoNuEco est une initiative financée par l’UE qui vise à comprendre comment un environnement changeant peut influencer l’interaction entre ces deux génomes. En utilisant Drosophila melanogaster comme organisme modèle, les scientifiques étudieront l’effet de la modulation de la température et du régime alimentaire sur la condition physique. Les résultats auront une valeur écologique importante et dévoileront de nouveaux aspects de la dynamique des populations.

Objectif

Mitochondria play a key role in energy metabolism through cellular respiration and provision of carbon skeletons for biosynthetic pathways, and act as gatekeepers for stress and cell death pathways such as apoptosis. The balance of these processes depends on the correct interaction between two different genomes, the mitochondrial and the nuclear genomes. As demonstrated by hybridization events, the cost of mitonuclear mismatches is metabolic dysfunction and potentially severe fitness loss. Temperature and dietary regimes are also well-known metabolic stressors influencing mitochondrial functions, metabolomic network structure and gene expression. Hence their variation can exacerbate mitonuclear incompatibilities.
Understanding the ability of animals to face the potential modification of their habitats is of vital importance. Climate change predictions estimate an increase in temperature and its variability, changes in in food web structures and in the distribution of populations. Events that may generate mitonuclear mismatches (such as hybridization between separate populations) are therefore expected to increase in frequency following the shifts in thermal niches.
The objective of this research is to test how far mitonuclear interactions contribute to thermal and dietary adaptation or breakdown in changing environments. Drosophila melanogaster is a leading model system to examine mito-nuclear interactions and adaptation. I will specifically employ experimental fly lines characterized by mitonuclear match and mismatch to investigate how temperature and diet modulation impact the major fitness effects of mitonuclear incompatibilities. This will be tested at the level of mitochondrial functions, gene expression and life-history trade-offs. The proposed project will be unique in its field, providing fundamental insights into how genetic and environmental factors interactions might translate to ecological population dynamics in a mutating world.

Coordinateur

UNIVERSITY COLLEGE LONDON
Contribution nette de l'UE
€ 224 933,76
Adresse
GOWER STREET
WC1E 6BT London
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Camden and City of London
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 224 933,76