Project description
Machine learning-based model for in-depth study of cognition
The introduction of mechanistic models well aligned with experimental data could significantly improve understanding of cellular and network properties underlying cognition, and what leads to pathological conditions. Funded by the Marie Skłodowska-Curie Actions programme, the AutoMIND project proposes to develop a machine learning-based model inference tool capable of identifying parameters of particular spiking neural network models while capturing arbitrary target neural dynamics from human brain recordings. The tool capitalises on recent advances in simulation-based inference techniques, incorporating simultaneous parameter manifold-learning and gradient-based simulations. Moreover it is capable of solving neuroscientific problems via in silico experiments.
Objective
Human cognition depends on complex coordinated dynamics of neural populations, which is shaped by a rich heterogeneity in cellular properties and network connectivity patterns of neural circuits. While cognitive neuroscience leverages macroscopic brain signals to relate neural activity to behavioral states, we currently cannot dissect them for their physiological contributions, hindering mechanistic interpretations of experimental data. One way to systematically study how physiological parameters shape neural dynamics is through mechanistic modeling of spiking neural networks. However, current modeling approaches are not quantitatively constrained by observed electrophysiological data, and often require painstaking and ad-hoc parameter-tuning by hand. Efficient discovery of mechanistic models that are consistent with experimental data would dramatically accelerate our understanding of how cellular and network properties impact cognition, and why it breaks down in pathological states, representing a radical departure from how neural data is analyzed in cognitive neuroscience. To this end, I propose to develop a machine learning-assisted model inference tool—Automated Model Inference from Neural Dynamics (AutoMIND)—that can identify parameters of candidate spiking neural network models that could capture arbitrary target neural dynamics from human brain recordings. AutoMIND extends on recent advances in simulation-based inference techniques, incorporating simultaneous parameter manifold-learning and gradient-based simulations. AutoMIND has broad utility for tackling neuroscientific questions by enabling expedited in-silico experiments. Here, I apply it to multiscale neural data to study how cellular and network properties shape: 1) the emergence of synchronous network oscillations during early neurodevelopment, and 2) the difference in neural dynamics and computation between sensory and association cortices—two questions of fundamental importance to neuroscience.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology cognitive neuroscience
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
72074 Tuebingen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.