Skip to main content

Automated Model Inference from Neural Dynamics for a Mechanistic Understanding of Cognition

Objective

Human cognition depends on complex coordinated dynamics of neural populations, which is shaped by a rich heterogeneity in cellular properties and network connectivity patterns of neural circuits. While cognitive neuroscience leverages macroscopic brain signals to relate neural activity to behavioral states, we currently cannot dissect them for their physiological contributions, hindering mechanistic interpretations of experimental data. One way to systematically study how physiological parameters shape neural dynamics is through mechanistic modeling of spiking neural networks. However, current modeling approaches are not quantitatively constrained by observed electrophysiological data, and often require painstaking and ad-hoc parameter-tuning by hand. Efficient discovery of mechanistic models that are consistent with experimental data would dramatically accelerate our understanding of how cellular and network properties impact cognition, and why it breaks down in pathological states, representing a radical departure from how neural data is analyzed in cognitive neuroscience. To this end, I propose to develop a machine learning-assisted model inference tool—Automated Model Inference from Neural Dynamics (AutoMIND)—that can identify parameters of candidate spiking neural network models that could capture arbitrary target neural dynamics from human brain recordings. AutoMIND extends on recent advances in simulation-based inference techniques, incorporating simultaneous parameter manifold-learning and gradient-based simulations. AutoMIND has broad utility for tackling neuroscientific questions by enabling expedited in-silico experiments. Here, I apply it to multiscale neural data to study how cellular and network properties shape: 1) the emergence of synchronous network oscillations during early neurodevelopment, and 2) the difference in neural dynamics and computation between sensory and association cortices—two questions of fundamental importance to neuroscience.

Call for proposal

H2020-MSCA-IF-2020
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Address
Geschwister-scholl-platz
72074 Tuebingen
Germany
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 162 806,40