Description du projet
Une étude s’intéresse aux modèles intégrables dans la classe d’universalité KPZ
L’équation de Kardar-Parisi-Zhang (KPZ) est une équation différentielle partielle stochastique non linéaire qui a été utilisée pour décrire des phénomènes tels que la turbulence et les processus de croissance d’interface qui sont loin de l’équilibre. Financé par le programme Actions Marie Skłodowska-Curie, le projet KPZcomb vise à révéler les propriétés fondamentales des modèles intégrables de la classe d’universalité KPZ à des températures positives. Combinant statistiques, combinatoire et systèmes intégrables, l’étude devrait permettre de dériver des solutions dans des contextes complexes impliquant des géométries spatiales restreintes et des fonctions de corrélation multipoints.
Objectif
"The Kardar-Parisi-Zhang equation (KPZ) was introduced in 1986 as a universal model to capture statistics of a wide range of physical phenomena such as growth of interfaces or turbulent fluids. Remarkably fluctuations of this class of systems fall out of the scope of the classical central limit theorem. Understanding these phenomena has driven a tremendous activity in rigorous mathematics leading to groundbreaking theories or even to whole new fields such as that of Integrable Probability, where this proposal belongs.
Since the seminal work of Johansson (1999), it is understood that systems in the KPZ class are governed by distributions coming from random matrix theory. So far, a framework with clear ""determinantal structure"" has been created to tackle models at ""zero temperature"". Progress in positive temperature setting, including the KPZ equation, only came during the last decade. Insights from many different fields (combinatorics, symmetric functions, etc) into probability, allowed to treat one-point statistics of certain systems at positive temperature. In all instances a mysterious determinantal structure, whose origins elude understanding, appears to govern (so far only) one-point statistics.
This project aims to reveal the deep foundations of integrability of KPZ models at positive temperature and extend its scope. This will allow to settle the solvability in situations that are currently out of reach such as restricted spatial geometries and multi-point correlations. To achieve this we will follow a new route producing combinatorial mappings of positive temperature systems to purely determinantal ones. Our approach will make novel uses of methods from combinatorics and integrable systems (via the Yang-Baxter toolbox) and will create new dynamics linking integrable systems (such as box-ball system) to the KPZ universe. At the same time our probabilistic insights will give rise to new methodologies and will answer old questions from algebraic combinatorics"
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2020
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
CV4 8UW COVENTRY
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.