Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

The combinatorics of KPZ at positive temperature

Descrizione del progetto

Uno studio indaga sui modelli integrabili nella classe di universalità KPZ

L’equazione Kardar-Parisi-Zhang (KPZ) è un’equazione differenziale parziale stocastica non lineare che è stata utilizzata con successo per descrivere fenomeni tra cui la turbolenza e i processi di crescita dell’interfaccia che sono lontani dall’equilibrio. Il progetto KPZcomb, finanziato dal programma di azioni Marie Skłodowska-Curie, intende rivelare le proprietà fondamentali dei modelli integrabili nella classe di universalità KPZ in presenza di temperature positive. Lo studio, che combinerà statistiche, combinatoria e sistemi integrabili, dovrebbe permettere di ricavare soluzioni in contesti complessi che presentano geometrie spaziali ristrette e funzioni di correlazione multipunto.

Obiettivo

"The Kardar-Parisi-Zhang equation (KPZ) was introduced in 1986 as a universal model to capture statistics of a wide range of physical phenomena such as growth of interfaces or turbulent fluids. Remarkably fluctuations of this class of systems fall out of the scope of the classical central limit theorem. Understanding these phenomena has driven a tremendous activity in rigorous mathematics leading to groundbreaking theories or even to whole new fields such as that of Integrable Probability, where this proposal belongs.
Since the seminal work of Johansson (1999), it is understood that systems in the KPZ class are governed by distributions coming from random matrix theory. So far, a framework with clear ""determinantal structure"" has been created to tackle models at ""zero temperature"". Progress in positive temperature setting, including the KPZ equation, only came during the last decade. Insights from many different fields (combinatorics, symmetric functions, etc) into probability, allowed to treat one-point statistics of certain systems at positive temperature. In all instances a mysterious determinantal structure, whose origins elude understanding, appears to govern (so far only) one-point statistics.
This project aims to reveal the deep foundations of integrability of KPZ models at positive temperature and extend its scope. This will allow to settle the solvability in situations that are currently out of reach such as restricted spatial geometries and multi-point correlations. To achieve this we will follow a new route producing combinatorial mappings of positive temperature systems to purely determinantal ones. Our approach will make novel uses of methods from combinatorics and integrable systems (via the Yang-Baxter toolbox) and will create new dynamics linking integrable systems (such as box-ball system) to the KPZ universe. At the same time our probabilistic insights will give rise to new methodologies and will answer old questions from algebraic combinatorics"

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITY OF WARWICK
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 224 933,76
Indirizzo
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
Regno Unito

Mostra sulla mappa

Regione
West Midlands (England) West Midlands Coventry
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 224 933,76
Il mio fascicolo 0 0