Project description
Computer-assisted enhancements to the mathematical descriptions of fluid mechanics
Fluid interface problems are widespread in engineering and design. Incompressible fluids with moving interfaces are a special case of this category of problems that includes inkjet and bubble dynamics and a fish or submarine in motion. While there are no completely incompressible fluids, most fluids, including water, are treated as incompressible for practical purposes. This makes developing numerical methods to describe applications particularly relevant – and it is also particularly challenging. With the support of the Marie Skłodowska-Curie Actions programme, the CAMINFLOW project will develop computer-assisted mathematical proofs and arithmetic libraries to complement existing methods for the mathematical analysis of fluid interface problems.
Objective
The CAMINFLOW project aims to further explore the question of global regularity versus finite-time singularity formation in mathematical fluid mechanics. It proposes three horizons: 1) Modulated self-similar finite-time singularities in degenerate parabolic equations, 2) Fluid-interface finite-time singularities, 3) Rigorous analysis of fluid-structure moving interfaces.
Module 1 is organized in two Work Packages: 1.1) Finite-time self-similar pinchoff for the axisymmetric surface diffusion equation (local, 1d), 1.2) Self-similar finite-time singularity in incompressible porous medium (nonlocal, 2d).
Module 2 focuses on the blowup of the curvature of the Muskat problem (also known as Hele-Shaw).
Module 3 contains two Work Packages: 3.1) Local and global well-posedness theory for the inextensible membrane problem. 3.2) Rigorous proof of the tumbling/tank-treading transition for inextensible membranes in a shear flow.
A central and unifying method in this action is Computer-Assisted Proofs (CAP). Due to the highly demanding technical level of the analysis involved, new interval arithmetic libraries for singular integrals will be developed in Arb. Moreover, new modules in the framework Dedalus will be developed as well to perform accurate numerical simulations (that will help deciding whether a singularity is forming or not). These techniques will be applied complementing the methods from contour dynamics, harmonic analysis, and energy methods, needed to obtain results in the mathematical analysis of fluid interface problems.
The CAMINFLOW project will be carried out by the experienced researcher, who worked during his PhD thesis on the global regularity question for incompressible fluid interfaces coming from nonlinear, nonlocal parabolic partial differential equations, and then as a postdoc moved on to fluid-structure elastic interfaces. The ER will collaborate with a Supervisor who is a prominent expert in CAP and their application to the fluid mechanics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics applied mathematics mathematical physics
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08007 BARCELONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.