Project description
Numerical models support sustainable advances in titanium forming processes
Beta-titanium alloys are highly valued in biomedical and aerospace applications for their excellent mechanical properties, light weight and suitability for implants. Given their increasing use, finding more sustainable forming methods is key. Factors such as the forming temperature and the chemical composition of the beta-stabiliser have been proven to influence the material deformation response and thus affect the forming processes. With the support of the Marie Skłodowska-Curie Actions programme, the ViFoMeTi project is developing an innovative integrated model capable of predicting the thermomechanical behaviour of such alloys, taking into account temperature and chemical composition for improved accuracy. The model will be validated for both room and high temperature forming.
Objective
The experienced researcher Bernardete Coelho, doctor in Mechanical Engineering from the University of Aveiro (Portugal), aims at leading research activities on the numerical modelling of the thermo-mechanical behaviour of -metastable titanium alloys. Such activities will be carried out in Universit Bretagne Sud (France) under the supervision of Prof. Sandrine Thuillier.
Advanced materials such as titanium alloys are considered as technological key enablers in societal challenges and a key factor in technological solutions, as they determine the process, the mechanical properties and the service life of an object. Regarding -titanium alloys, they are more and more used in the biomedical and aeronautic fields and the modelling of their thermo-mechanical behaviour will become an enabling technology in order to perform forming at warm and elevated temperatures. Given the huge interest in the thermo-mechanical behaviour of lightweight -titanium alloys, one objective of this project consists in its investigation and numerical modelling over a large range of temperatures. It is also intended to include the modelling of the occurrence of plastic instabilities in -titanium alloys, for a biphasic material, i.e. titanium molybdenum with several compositions as well as an industrial material. Moreover, the technological part of this project aims to validate the thermo-mechanical models to the case of hot forming of a -titanium alloy. Then, the final objective of this project is to perform a fast eco-audit, using eco-indicators, for different scenarios including hot forming and heat treatment for -titanium alloys. Additionally, a business plan for a promising application will be developed. As a global overview, this project deals with the virtual forming and mechanical design of parts made out of -titanium alloys for a large range of compositions, based on the modelling of the thermo-mechanical properties (up to rupture) of such alloys in a large range of temperatures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology mechanical engineering manufacturing engineering
- natural sciences mathematics applied mathematics mathematical physics
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences mathematics applied mathematics mathematical model
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
56100 Lorient
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.