Project description
New research could yield clues to the origin of massive stars
Massive stars are the rock stars of our universe. They may live fast and die young, exploding as powerful supernovae, but they have a fundamental influence on galactic evolution. But how are massive stars and clusters formed in our cosmos? This is the question that the SMART project seeks to answer. Funded by the Marie Skłodowska-Curie Actions programme, researchers will study the gas accretion mechanism that drives star formation and the mass ejection processes that occur throughout the stars’ entire life. Near-infrared observations of a sample of protostars will enable researchers to probe warm regions inside the star inner disc as well as outflows of matter. They may also reveal the presence of nearby lower-mass stars that could be forming a cluster.
Objective
Massive stars are the rock stars of the Universe - blazing short, intense lives, but with death resonating for generations to come! Although massive stars have a profound impact on scales from galaxies down to nearby protoplanetary discs, how they form remains poorly understood. The Star formation history of MAssive pRoTostars (SMART) project has a clear motivation: to understand the origin of massive stars and their associated star clusters that are fundamental building blocks of all the galaxies in the Universe. I propose a research plan to unveil the birth of massive protostars through the study of accretion and ejection processes. For this, I will take an observational approach using the most powerful telescopes available on Earth and in space. I will focus in the near-infrared (NIR) regime on a sample of massive protostars with both imaging and spectroscopic techniques. NIR observations are key for probing the warm regions of the inner disc and shocked and irradiated material in outflowing jets. They can also reveal the presence of nearby lower-mass stars that may be forming as part of a cluster and influencing the massive protostar. My target sample covers a wide range of evolutionary stages and environmental conditions and already has significant ancillary multi-wavelength data available in the far-infrared and radio regimes. Several recent pilot studies have demonstrated the power of NIR observations to measure key properties of these protostars yielding new insights into these systems. Now these studies need to be greatly expanded to systematically probe the evolutionary sequence and effects of environment, ultimately leading to new tests of formation theories.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- humanities history and archaeology history
- natural sciences physical sciences astronomy stellar astronomy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.