Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Engineering of Superfluorescent Nanocrystal Solids

Project description

Light-emitting nanocrystals hold promise for quantum applications

Superfluorescence describes the collective emission of fluorescent light by an ensemble of excited atoms or ions. Recently, research has shown that lead halide perovskite nanocrystals can be assembled into highly ordered superlattices that exhibit superfluorescence. Although this unusual optical phenomenon renders this material suitable for use in quantum light sources, its exact origin has been a topic of debate. The EU-funded PROMETHEUS project will combine nanochemistry, spectroscopy and quantum optics to further advance knowledge in the field. PROMETHEUS’ groundbreaking concept relies on the development of light-coupled nanocrystal solids with engineered light–matter interactions. Such materials are expected to expand the applications of emissive nanocrystals of any shape and material (not only metal halide perovskites) in quantum technologies.

Objective

The time is right for light-emitting colloidal nanocrystals to meet the demands of the second quantum revolution. The cooperative emission (superfluorescence) was recently observed in the micron-sized solids of colloidal lead halide perovskite nanocrystals, offering a path to low-cost, solution-processed sources of bright and coherent light. Superfluorescence, characterized by high-intensity and ultrashort bursts of indistinguishable photons, makes nanocrystal solids desired targets for photonics and quantum information applications. However, the exact origin of the superfluorescence is debated, and the rules of nanomaterial design for on-demand cooperativity are unknown.
PROMETHEUS tackles these issues by combining nanochemistry with spectroscopy and tools of quantum optics. The project's approach consists of 1) synthesis and judicious selection of emissive metal halide nanocrystals with minimal exciton energy inhomogeneity, 2) accelerated self-assembly of nanocrystals into binary solids with a tunable fraction of emitters, 3) cryogenic micro-photoluminescence spectroscopy at the level of individual nanocrystal solids. The control of the coupling between emissive nanocrystals is achieved by diluting optically-dense nanocrystal solids with a second, transparent nanocrystal component. Measurements of spectroscopic observables, coherence, and photon statistics on single nanocrystal solids are used to dissect the roots and properties of cooperative emission.
The project introduces a concept of light-coupled nanocrystal solids where light-matter interactions are engineered through structure and composition. This concept goes beyond metal halides and applies to emissive nanocrystals of any shape, opening a class of colloidal nanomaterials with light emission controllable between single-particle and many-body regimes. Such materials are expected to expand applications of emissive nanocrystals in quantum technologies and yield new uses in materials science.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

LUNDS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 875 938,00
Address
Paradisgatan 5c
22100 Lund
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 875 938,00

Beneficiaries (2)

My booklet 0 0