Descripción del proyecto
Avances en la teoría de la generalización en el aprendizaje automático
El aprendizaje automático es una palabra en boga en el mundo tecnológico de hoy día. Desde etiquetar automáticamente a un amigo en aplicaciones de las redes sociales y reservar un taxi en línea a mapas en línea que confirman que uno va por la «vía más rápida», el aprendizaje automático forma parte de nuestra vida cotidiana. El aumento de las aplicaciones de aprendizaje automático que incluyen datos privados y sensibles requiere algoritmos para proteger dichos datos. En el proyecto financiado con fondos europeos GENERALIZATION, se trabajará en la especificación de la cantidad de datos necesarios para facilitar el aprendizaje automático privado. Las respuestas harán avanzar este campo en términos de eficiencia, fiabilidad y aplicabilidad. El trabajo del proyecto combina ideas de distintos ámbitos de la informática y las matemáticas.
Objetivo
Recent years have witnessed tremendous progress in the field of Machine Learning (ML). Learning algorithms are applied in an ever-increasing variety of contexts, ranging from engineering challenges such as self-driving cars all the way to societal contexts involving private data. These developments pose important challenges (i) Many of the recent breakthroughs demonstrate phenomena that lack explanations, and sometimes even contradict conventional wisdom. One main reason for this is because classical ML theory adopts a worst-case perspective which is too pessimistic to explain practical ML: in reality data is rarely worst-case, and experiments indicate that often much less data is needed than predicted by traditional theory. (ii) The increase in ML applications that involve private and sensitive data highlights the need for algorithms that handle the data responsibly. While this need has been addressed by the field of Differential Privacy (DP), the cost of privacy remains poorly understood: How much more data does private learning require, compared to learning without privacy constraints? Inspired by these challenges, our guiding question is: How much data is needed for learning? Towards answering this question we aim to develop a theory of generalization which complements the traditional theory and is better fit to model real-world learning tasks. We will base it on distribution-, data-, and algorithm-dependent perspectives. These complement the distribution-free worst-case perspective of the classical theory, and are suitable for exploiting specific properties of a given learning task. We will use this theory to study various settings, including supervised, semisupervised, interactive, and private learning. We believe that this research will advance the field in terms of efficiency, reliability, and applicability. Furthermore, our work combines ideas from various areas in computer science and mathematics; we thus expect further impact outside our field.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2021-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
32000 Haifa
Israel
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.