Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Controlling particle flow driven by local concentration gradients in geological porous media

Project description

Controlling particle flow in porous media using solute concentration gradients

Small particles are widely leveraged for groundwater remediation or for sealing damaged geological confinement barriers. However, directing the material flow towards a contaminated or damaged region is challenging. The EU-funded TRACE-it project aims to regulate the flow of colloidal particles in subsurface geological environments using in situ solute concentration gradients. The spontaneous motion of colloidal particles in fluids due to solute concentration gradients, known as diffusiophoresis, enables colloids to access otherwise inaccessible regions. TRACE-it will integrate microfluidic experiments, observation and multi-scale computational fluid dynamics to describe the transport mechanism at the pore scale before scaling it up.

Objective

Many engineering applications foreseen the usage of small particles for groundwater remediation or for sealing damaged geological confinement barriers, however, delivering materials to a contaminated or damaged region is challenging. TRACE-it aims at controlling the flow of colloidal particles in subsurface geological environments using in situ solute concentration gradients. The phenomenon, known as diffusiophoresis, has a tremendous potential to move colloids to regions that are inaccessible by conventional transport. Diffusiophoretic transport in porous media, however, has received very little attention so far, especially in standard transport in porous media models where it remains unconsidered.

What is the magnitude and location of solute concentration gradients produced during subsurface processes? How to use these gradients to transport colloids towards target regions? The answers will be found through a combined experimental-modelling approach to: (i) measure coupled hydro-electro-chemical dynamics, (ii) characterize concentration gradients generated in situ in geological porous media, (iii) identify the influence of concentration gradients on particle transport and develop a macroscale model of transport in porous media that includes diffusiophoresis. TRACE-it integrates the usage of microfluidic experiments, observation techniques, and multi-scale computational fluid dynamics to describe the transport mechanisms at the pore-scale before upscaling to the continuum-scale.

The experimental-modelling toolset will open new ways for moving colloidal particles by sensing chemical gradients generated naturally or from human activity, leading them to their target such as oil, contaminants, or reacting minerals. During column-scale experiments, controlling colloid transport will be achieved through the characterization of solute concentration gradients and the use of specifically designed particles.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Host institution

UNIVERSITE D'ORLEANS
Net EU contribution
€ 1 361 010,00
Address
CHATEAU DE LA SOURCE
45067 Orleans Cedex 2
France

See on map

Region
Centre — Val de Loire Centre — Val de Loire Loiret
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 499 985,00

Beneficiaries (2)