Project description
Controlling particle flow in porous media using solute concentration gradients
Small particles are widely leveraged for groundwater remediation or for sealing damaged geological confinement barriers. However, directing the material flow towards a contaminated or damaged region is challenging. The EU-funded TRACE-it project aims to regulate the flow of colloidal particles in subsurface geological environments using in situ solute concentration gradients. The spontaneous motion of colloidal particles in fluids due to solute concentration gradients, known as diffusiophoresis, enables colloids to access otherwise inaccessible regions. TRACE-it will integrate microfluidic experiments, observation and multi-scale computational fluid dynamics to describe the transport mechanism at the pore scale before scaling it up.
Objective
Many engineering applications foreseen the usage of small particles for groundwater remediation or for sealing damaged geological confinement barriers, however, delivering materials to a contaminated or damaged region is challenging. TRACE-it aims at controlling the flow of colloidal particles in subsurface geological environments using in situ solute concentration gradients. The phenomenon, known as diffusiophoresis, has a tremendous potential to move colloids to regions that are inaccessible by conventional transport. Diffusiophoretic transport in porous media, however, has received very little attention so far, especially in standard transport in porous media models where it remains unconsidered.
What is the magnitude and location of solute concentration gradients produced during subsurface processes? How to use these gradients to transport colloids towards target regions? The answers will be found through a combined experimental-modelling approach to: (i) measure coupled hydro-electro-chemical dynamics, (ii) characterize concentration gradients generated in situ in geological porous media, (iii) identify the influence of concentration gradients on particle transport and develop a macroscale model of transport in porous media that includes diffusiophoresis. TRACE-it integrates the usage of microfluidic experiments, observation techniques, and multi-scale computational fluid dynamics to describe the transport mechanisms at the pore-scale before upscaling to the continuum-scale.
The experimental-modelling toolset will open new ways for moving colloidal particles by sensing chemical gradients generated naturally or from human activity, leading them to their target such as oil, contaminants, or reacting minerals. During column-scale experiments, controlling colloid transport will be achieved through the characterization of solute concentration gradients and the use of specifically designed particles.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
45067 Orleans Cedex 2
France