Description du projet
De nouvelles indications sur les écoulements de gaz produits par les trous noirs massifs
Les trous noirs massifs se situent au centre des galaxies et libèrent une quantité extraordinaire d’énergie durant leur phase d’accrétion. De telles quantités d’énergie déclenchent la formation d’écoulements de gaz qui peuvent considérablement influencer l’évolution de la galaxie hôte. Cependant, malgré les remarquables travaux théoriques et expérimentaux menés pour sonder la dynamique de ces écoulements, la manière exacte dont ils affectent la formation et l’évolution des galaxies demeure inconnue. Le projet WINGS, financé par l’UE, se penchera sur cette question. En combinant les observations du télescope spatial James Webb de la NASA, du grand réseau d’antennes millimétrique/submillimétrique de l’Atacama et du très grand télescope (VLT pour very large telescope) de l’Observatoire européen austral, WINGS rassemblera la plus grande étude à haute résolution spatiale des écoulements multiphasiques.
Objectif
Massive black holes (BHs) reside at the center of galaxies and release an extraordinary amount of energy during their accretion phase. Such energy drives galaxy-scale gas outflows that can significantly influence the evolution of the host galaxy. Despite the remarkable theoretical and observational progress in quantifying the energetics and dynamics of such outflows, establishing their role during the formation and evolution of galaxies remains a long-standing problem in modern astrophysics. WINGS is designed to finally settle whether outflows driven by BHs are able to shape galaxies and their environment or not. To achieve this goal, we will build up a novel observational and theoretical framework that investigates the role of outflows in the early Universe, when BHs and galaxies are growing at the highest rates and outflows are expected to be more common and powerful, leaving a prominent mark on galaxy evolution. Thanks to the PI, WINGS will have access to several key observing programs carried out with ALMA and VLT as well as the guaranteed-time observer (GTO) program (~900 hours) with the NIRSpec spectrograph on board the soon-to-launch JWST. By exploiting both observations of local outflows and zoom-in simulations, we will develop a 3D kinematic outflow model that will be an asset in (i) interpreting existing high-redshift data and upcoming JWST observations, (ii) characterizing for the first time outflow properties across cosmic time (up to z~9), and (iii) identifying feedback signatures in the interstellar and circumgalactic medium properties. The combination of JWST, ALMA, and VLT observations will enable WINGS to assemble the largest high-spatial resolution survey of multi-phase outflows. The support from the ERC will be crucial to assemble a unique team mixing the observation-oriented and theory-oriented approach, as a joint effort of observations and simulations is the key to make a major breakthrough in understanding outflows driven by BHs.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thème(s)
Régime de financement
HORIZON-AG - HORIZON Action Grant Budget-BasedInstitution d’accueil
56126 Pisa
Italie