Objective
The technological opportunities enabled by understanding and controlling the microscale world have not yet been capitalized to disruptively improve energy processes, especially heat transfer and power generation. This is mainly due to the laminar flows typically encountered in microdevices resulting in low mixing and transfer rates. This is a central unsolved problem in the thermal-fluid sciences, in what some researchers refer to as lab-on-a-chip and energy - the microfluidic frontier. Therefore, the overarching goal of the SCRAMBLE project is to overcome this long-standing frontier by (i) discovering the fundamentals of inducing turbulent flow in microchips by means of utilizing high-pressure supercritical fluids, (ii) finding the critical conditions to drastically enhance and control mixing and transfer processes, and (iii) designing, fabricating and testing a disruptive first-ever series of turbulence-on-a-chip prototypes for transferring energy with a hundredfold performance improvement with respect to standard microsystems.
Achieving microconfined turbulence has deep scientific and engineering implications for disruptively advancing microfluidic-intensive applications, like for example in chemistry and biomedicine, and to open a new research avenue to develop and apply groundbreaking turbulent flow solutions to microfluidic energy conversion and power generation technologies (these consume an aggregated 70% of the European Union?s energy). In the medium- to long-term future, the technology proposed could enable (i) the efficient miniaturization of thermodynamic cycles for power generation, (ii) reconceptualization of the next-generation of computer processors based on remarkably powerful microfluidic-based cooling, and (iii) the adoption of novel microfluidic solutions in fuel cells for transportation and propulsion. These advances, together with many other potential breakthroughs, could help drive the transition toward a greener energy economy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsmicrofluidics
- engineering and technologyother engineering and technologiesmicrotechnologylab on a chip
- engineering and technologyenvironmental engineeringenergy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
08034 Barcelona
Spain