Objective
We do not understand how lightning in our atmosphere initiates, nor how it develops and propagates after initiation. The fundamental difficulty is that these basic lightning phenomena are driven by the meter-scale dynamics of the low-conductivity plasma that surrounds the lightning channel, known as the corona, but the dynamics of this corona is as-yet unresolved. Resolving the structure of the lightning corona and how it develops in time is the holy grail of lightning science, as it will reveal the mechanism behind lightning initiation, the physics behind how lightning channels grow and propagate, and why lightning emits intense flashes of X-ray and gamma ray radiation. During the LIFT project I will develop new advanced data processing techniques, including polarization imaging and interferometric beamforming, to produce meter-scale and nanosecond precise radio-frequency images of lightning activity. This project will use data collected by the LOw Frequency ARray (LOFAR) radio telescope, which previous work has shown to be the most precise and sensitive lightning interferometer in the world. The end result of this project will be finely resolved images of lightning corona that are an order-of-magnitude more precise than all previous work. Since it is the coronal plasma that drives most other lightning processes, the impact will be a fundamentally deeper insight into the physics of lightning initiation, propagation, and emission of energetic radiation, including resolving long-standing questions of how cosmic rays or hydrometers could be involved in lightning initiation, how lightning expands from a single point to a kilometer-scale network, and which key plasma processes allow lightning channels to grow. In addition, the LIFT project will make use of the drastically increased bandwidth and processing power that will be made available during the LOFAR 2.0 upgrade in order to push the observations to even higher spectral and spatial precision.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radio frequency
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3526 KV UTRECHT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.