Objective
For robots to assist humanity in homes, or hospitals, the capability to manipulate diverse objects is imperative. So far, however, robotic manipulation technology has struggled in managing the uncertainty and unstructuredness that characterize human environments.
Machine learning is a natural approach -- the robot can adapt to a given scenario, even if it was not programmed to handle it beforehand. Indeed, Deep Reinforcement Learning (deep RL), which has recently led to AI breakthroughs in computer games, has been publicized as the learning-based approach to robotics. To date, however, deep RL studies focused on known and observable systems, where uncertainty was resolved by lengthy trial and error. Quickly learning to act in novel environments, as required for robotics, is not yet within our reach.
The crux of the matter is the tight coupling between perception and control under high uncertainty -- the robot must actively reduce uncertainty while also trying to solve the task; for complex and high-dimensional systems, we do not have a suitable algorithmic framework for this.
In this proposal, our overarching goal is to:
Develop the algorithmic framework of using deep learning in problems that tightly couple perception, planning, and control, for advancing robotic AI to reliably manipulate general objects in unstructured environments.
Towards this end, we shall develop neural network representations of uncertainty, and algorithms that estimate uncertainty from data. We will develop theory and algorithms for decision making under uncertainty, bringing in a fresh perspective to the problem based on Bayesian reinforcement learning (Bayes-RL). These advances will allow us to study safety certificates for deep RL, and develop a general and practical methodology for learning-based robotic manipulation under uncertainty, validated on real robot experiments. Aside from robotic manipulation, we expect impact on various fields where decision making plays an important role.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.