Objective
The ongoing discovery of ever-more Earth-like exoplanets raises the question how these planets form. Answering this question requires a breakthrough in our understanding of terrestrial planet formation, since this topic has previously been studied almost exclusively in the context of the Solar System and with an emphasis on the late-stage giant-impact phase. However, recently, a window into the very earliest stages of planet formation has opened through radio observations of protoplanetary discs around young stars that reveal large reservoirs of mm-sized pebbles. In EXODOSS, I will model the full planetary growth process, starting from these primordial pebbles, in order to improve our fundamental understanding of terrestrial planet formation. In order to do so, I will develop a first-of-its-kind GPU-accelerated N-body simulator that models planetary growth and composition in a protoplanetary disc where angular momentum is transported by disc winds. The code will follow the growth of the first pebbles and km-sized planetesimals to larger protoplanets, up to the late dynamical evolution of fully-grown planetary systems. Additional supporting hydrodynamical simulations will provide much needed accurate prescriptions for the evolution of the protoplanetary disc and for the accretion rates of pebbles and gas onto the cores and atmospheres of young protoplanets. Taken together, I will establish a self-consistent model of planet formation capable of addressing how Earth-like planets form, with results that can be confronted against dynamical and compositional constraints from the Solar System and the growing population of well-characterized Earth-like exoplanets. These theoretical investigations are needed in the broader context of humanity's search for habitable Earth-like exoplanets in our galaxy, our desire to understand their formation, and as a first step in tracing the origin of the elements, such as water, required for the development of life as we know it.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.