Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Interpretable Artificial Intelligence across Scales for Next-Generation Cancer Prognostics

Objectif

Computation pathology has the potential to revolutionize cancer care and research, specifically through improving assessment of patient prognosis and treatment selection by applying advanced machine learning methods to digitized tissue sections, i.e. whole-slide images (WSIs). This will allow us to replace the current state-of-the-art of human-developed cancer grading systems. However, the field is currently hindered by significant knowledge gaps: we do not know how to effectively leverage both global and local information in WSIs, how to identify pan-cancer prognostic features, and how to make machine learning models explainable and interpretable. In this project, I will address these key knowledge gaps by building on the novel stochastic streaming gradient descent developed in my group. Specifically, I will integrate innovative multi-task and cross-task learning algorithms with SSGD. Furthermore, I will leverage the latest advances in self-supervision, self-attention and natural language processing to endow deep neural networks with unprecedented transparency and explainability. Last, the project will validate our developed methodology in the largest dataset of oncological WSIs in the world, and, for the first time, identify links between morphological prognostic features and genetic features. By publicly releasing all developed tools and data, the proposed project will have a scientific multiplier effect for the fields of oncology, computational pathology and machine learning. Specifically, the derived cancer-specific and pan-cancer biomarkers can be leveraged in clinical care and cancer research, the enhanced SSGD method for other tasks in computational pathology and our novel multi-task and explainability algorithms can impact other research areas in machine learning, such as remote sensing and self-driving cars.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2021-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

STICHTING RADBOUD UNIVERSITAIR MEDISCH CENTRUM
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 494 810,00
Adresse
GEERT GROOTEPLEIN 10 ZUID
6525 GA NIJMEGEN
Pays-Bas

Voir sur la carte

Région
Oost-Nederland Gelderland Arnhem/Nijmegen
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 494 810,00

Bénéficiaires (1)

Mon livret 0 0