Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Interpretable Artificial Intelligence across Scales for Next-Generation Cancer Prognostics

Obiettivo

Computation pathology has the potential to revolutionize cancer care and research, specifically through improving assessment of patient prognosis and treatment selection by applying advanced machine learning methods to digitized tissue sections, i.e. whole-slide images (WSIs). This will allow us to replace the current state-of-the-art of human-developed cancer grading systems. However, the field is currently hindered by significant knowledge gaps: we do not know how to effectively leverage both global and local information in WSIs, how to identify pan-cancer prognostic features, and how to make machine learning models explainable and interpretable. In this project, I will address these key knowledge gaps by building on the novel stochastic streaming gradient descent developed in my group. Specifically, I will integrate innovative multi-task and cross-task learning algorithms with SSGD. Furthermore, I will leverage the latest advances in self-supervision, self-attention and natural language processing to endow deep neural networks with unprecedented transparency and explainability. Last, the project will validate our developed methodology in the largest dataset of oncological WSIs in the world, and, for the first time, identify links between morphological prognostic features and genetic features. By publicly releasing all developed tools and data, the proposed project will have a scientific multiplier effect for the fields of oncology, computational pathology and machine learning. Specifically, the derived cancer-specific and pan-cancer biomarkers can be leveraged in clinical care and cancer research, the enhanced SSGD method for other tasks in computational pathology and our novel multi-task and explainability algorithms can impact other research areas in machine learning, such as remote sensing and self-driving cars.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2021-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

STICHTING RADBOUD UNIVERSITAIR MEDISCH CENTRUM
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 494 810,00
Indirizzo
GEERT GROOTEPLEIN 10 ZUID
6525 GA NIJMEGEN
Paesi Bassi

Mostra sulla mappa

Regione
Oost-Nederland Gelderland Arnhem/Nijmegen
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 494 810,00

Beneficiari (1)

Il mio fascicolo 0 0