Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Experimental Search for Quantum Advantages in Thermodynamics

Project description

Harnessing heat exchanges from quantum mechanics

The laws of thermodynamics frame our understanding of engines and heat exchanges, but discoveries in quantum mechanics show that they may need an update. The EU-funded ESQuAT project seeks to shed light on this by creating a new test circuit for experiments with quantum thermal machines. Researchers will develop an engineered physical bath that can be populated with any spectral distribution. This can then be connected to quantum thermal machines and heat flows can be spectrally tracked. The project will also test three types of refrigerators that cool based on the quantum principles of coherence, measurement backaction and collective effects. The ultimate objective is to make more powerful engines, faster-charging batteries and devices that reduce energy waste.

Objective

The technology advances of the last decades are forcing us to re-think laws and concepts of thermodynamics. An intense theoretical effort is underway to understand the role of quantum mechanical ingredients in thermodynamic processes. This effort might ultimately lead to more powerful engines, less energy waste, faster-charging batteries. However, despite pioneering experimental work, progress is hindered by the lack of a comprehensive experimental testbed for quantum thermal machines.
In this project I aim to provide the most ambitious and systematic experimental search for quantum advantages in thermodynamics thus far, based on a circuit quantum electrodynamics architecture.
I will first complement the toolkit of circuit quantum electrodynamics with a novel arrangement, which I term the engineered physical bath. This bath has a broadband, Ohmic spectral density. It can be populated with any spectral distribution and coupled to quantum thermal machines with arbitrary strengths. Finally, heat flows between the bath and the machine can be detected deep in the quantum regime and in a spectrally resolved way. Based on this augmented architecture, I will implement three types of novel quantum refrigerators. I devised each refrigerator to pinpoint the utilization of a specific quantum resource: quantum coherence, measurement backaction, and collective effects. I will measure the cooling power of the refrigerators while in situ exploring an unprecedently large space of parameters and connect my results to the most recent theoretical frameworks.
From this investigation, I expect two kinds of scientific breakthroughs: (i) observation of features that are unambiguously nonclassical in thermodynamic observables, and (ii) determination of advantages enjoyed by quantum thermal machines when fairly compared to their classical counterparts. Broadly, this project will deepen our understanding of quantum thermodynamics while establishing a new standard for experiments in the field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

CHALMERS TEKNISKA HOGSKOLA AB
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 124 089,00
Address
-
412 96 Goteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 124 089,00

Beneficiaries (1)

My booklet 0 0