Description du projet
Exploiter les échanges de chaleur de la mécanique quantique
Notre compréhension des moteurs et des échanges de chaleur est basée sur les lois de la thermodynamique, mais les découvertes issues de la mécanique quantique montrent qu’elles pourraient avoir besoin d’être mises à jour. Le projet ESQuAT, financé par l’UE, entend faire la lumière sur cette question en créant un nouveau circuit d’essai pour mener des expériences sur les machines thermiques quantiques. Les chercheurs mettront au point un bain physique qui pourra être peuplé à l’aide de n’importe quelle distribution spectrale. Ce bain pourra ensuite être connecté à des machines thermiques quantiques et les flux de chaleur pourront être suivis sur le plan spectral. Le projet testera également trois types de réfrigérateurs basés sur des principes quantiques de cohérence, de rétroaction de la mesure et d’effets collectifs. Son objectif final consiste à fabriquer des moteurs plus puissants, des batteries se chargeant plus rapidement et des dispositifs réduisant les gaspillages d’énergie.
Objectif
The technology advances of the last decades are forcing us to re-think laws and concepts of thermodynamics. An intense theoretical effort is underway to understand the role of quantum mechanical ingredients in thermodynamic processes. This effort might ultimately lead to more powerful engines, less energy waste, faster-charging batteries. However, despite pioneering experimental work, progress is hindered by the lack of a comprehensive experimental testbed for quantum thermal machines.
In this project I aim to provide the most ambitious and systematic experimental search for quantum advantages in thermodynamics thus far, based on a circuit quantum electrodynamics architecture.
I will first complement the toolkit of circuit quantum electrodynamics with a novel arrangement, which I term the engineered physical bath. This bath has a broadband, Ohmic spectral density. It can be populated with any spectral distribution and coupled to quantum thermal machines with arbitrary strengths. Finally, heat flows between the bath and the machine can be detected deep in the quantum regime and in a spectrally resolved way. Based on this augmented architecture, I will implement three types of novel quantum refrigerators. I devised each refrigerator to pinpoint the utilization of a specific quantum resource: quantum coherence, measurement backaction, and collective effects. I will measure the cooling power of the refrigerators while in situ exploring an unprecedently large space of parameters and connect my results to the most recent theoretical frameworks.
From this investigation, I expect two kinds of scientific breakthroughs: (i) observation of features that are unambiguously nonclassical in thermodynamic observables, and (ii) determination of advantages enjoyed by quantum thermal machines when fairly compared to their classical counterparts. Broadly, this project will deepen our understanding of quantum thermodynamics while establishing a new standard for experiments in the field.
Champ scientifique
Mots‑clés
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thème(s)
Régime de financement
ERC - Support for frontier research (ERC)Institution d’accueil
412 96 Goteborg
Suède