Objective
Functional, topologically complex organic molecules are rising stars in modern materials science due to their biocompatibility, structural variability, and wealth of physico-chemical properties. Their practical applications often involve interactions with small molecular targets (e.g. gases, environmental pollutants, and drugs) via relatively weak non-covalent forces. Key to these interactions are the topological features of host materials: arrangement of functional groups, pore size, and cavity volume.
Atom types and the forces connecting them in space determine molecular and material structures, defining their fundamental physical and chemical properties. These patterns comprise a universal chemical language. Numerous molecular representations exist, from strings in chemoinformatics to matrices in chemical machine learning. While these big data-oriented fingerprints generally reduce the dimensionality of atomic composition and connectivity, they do not capture the intricacies of shape and topology.
In PATTERNCHEM, several families of functional organic materials – graphenes, covalent-organic frameworks, and hyperbranched polymers – will provide a unique foundation for developing application-oriented fingerprints of their topological and non-covalent interaction features. After elucidating diverse structural descriptors of atomistic arrangement, substitution patterns, and two- and three-dimensional shapes of these materials, we will establish a scheme for quantifying the propensity for non-covalent interactions and assessing host-guest complementarity. Using this scheme, chemical and physical performance indicators relevant to targeted applications (e.g. as sensors, filters, and nanocarriers) can be computed. Finally, structure-property relationships between computed performance indicators and developed descriptors will be established and implemented into predictive frameworks for functional organic materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences mathematics pure mathematics topology
- natural sciences chemical sciences polymer sciences
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69118 HEIDELBERG
Germany
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.